Aims. Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive. Methods. We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered
Introduction. The use of platelet-rich concentrate (PRC) to enhance the healing response in tendon repair is currently an area of considerable interest. Activated platelets release a cocktail of growth factors and ECM regulating molecules. Previous work suggests that tenocytes are activated by contact with these clot-derived molecules. Our studies on tenocytes and PRC aim to establish the direct molecular and functional effects of PRC on tenocytes and to support the clinical research on Achilles tendon repair taking place within our group. We hypothesise that applying PRC to human tenocytes in culture will increase proliferation rate and survival by activating relevant signalling pathways. Materials and Methods. Using a centrifugation method, PRC was extracted from fresh human whole blood. The PRC was immediately clotted and left in medium overnight to release biological factors (at least 95% of presynthesized growth factors are secreted in the first hour of activation). 1. Human tenocytes derived from explanted healthy hamstring were used for up to three passages. Cells were treated with varying concentrations of PRC-conditioned medium and assessed for viable cell number (Alamar Blue™ fluorescence) and proliferation (Ziva™ Ultrasensitive BrdU assay) after 72hrs. For western blotting, cells were treated with 10% PRC for 5 or 30 minutes. Antibodies to P-ERK and P-Akt detected the active protein state on the blot, followed by membrane stripping and re-probing with pan antibodies. Quantification was achieved by densitometry using Visionworks software v. 6.7.1. Results. PRC-conditioned medium affected tenocytes in a dose-dependent manner. Viable number of tenocytes was significantly increased by 10% PRC-conditioned medium compared to controls (One-way ANOVA, Tukey's post-hoc test P<0.001) after 72hrs. 10% PRC-conditioned medium also demonstrated time-dependence with viable tenocyte number significantly increasing between 24 and 72hrs (One-way ANOVA, Bonferroni's post-hoc test P<0.001). After 72hrs, tenocyte proliferation significantly increased in the presence of 5% and 10% PRC-conditioned media compared to controls (One-way ANOVA, Tukey's post-hoc test P<0.05 and P<0.001 respectively). ERK and Akt phosphorylation was strongly stimulated by treatment with 10% PRC-conditioned medium for 5 minutes compared to controls, and remained high after a 30 minute application time. Discussion and Conclusions. Factors released by activated PRC act upon human tendon cells to strongly increase viable cell number and proliferation, which would, in vivo, directly support the healing response, independent of any additional beneficial effects on vascular repair. Both ERK and Akt are pivotal kinases in signalling pathways that favour survival and proliferation. It is clear that both signalling pathways are immediately and strongly activated by PRC, suggesting a clear benefit via both stimulated cell cycle and cell survival in the environmentally compromised conditions of a healing ruptured tendon. This conclusion is strongly supported by previous work on
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.