There is good scientific rationale to support the use of growth factors to promote musculoskeletal tissue regeneration. However, the clinical effectiveness of platelet-rich plasma (PRP) and other blood-derived products has yet to be proven. Characterization and reporting of PRP preparation protocols utilized in clinical trials for the treatment of musculoskeletal disease is highly inconsistent, and the majority of studies do not provide sufficient information to allow the protocols to be reproduced. Furthermore, the reporting of blood-derived products in orthopaedics is limited by the multiple PRP classification systems available, which makes comparison of results between studies challenging. Several attempts have been made to characterize and classify PRP; however, no consensus has been reached, and there is lack of a comprehensive and validated classification. In this annotation, we outline existing systems used to classify preparations of PRP, highlighting their advantages and limitations. There remains a need for standardized universal nomenclature to describe biological therapies, as well as a comprehensive and reproducible classification system for autologous blood-derived products. Cite this article:
The incorporation of platelet rich plasma (PRP) in the treatment of various musculoskeletal conditions has increased exponentially over the past decade. While described most often as an augment or treatment for tendinopathies and acute tendon injuries, more recently, PRP has been described as an adjunct to arthroplasty procedures, mostly with respect to knee arthroplasty. In the shoulder, only a single study has been published, in which Zavadil and colleagues performed a randomised study of 40 patients undergoing total shoulder arthroplasty undergoing either treatment with autologous platelet gel and
Summary Statement. An autologous thrombin activated 3-fold PRP, mixed with a biphasic calcium phosphate at a 1mL:1cc ratio, is beneficial for early bone healing in older age sheep. Introduction. The management of bone defects continues to present challenges. Upon activation, platelets secrete an array of growth factors that contribute to bone regeneration. Therefore, combining platelet rich plasma (PRP) with bone graft substitutes has the potential to reduce or replace the reliance on autograft. The simple, autologous nature of PRP has encouraged its use. However, this enthusiasm has failed to consistently translate to clinical expediency. Lack of standardisation and improper use may contribute to the conflicting outcomes reported within both pre-clinical and clinical investigations. This study investigates the potential of PRP for bone augmentation in an older age sheep model. Specifically, PRP dose is controlled to provide clearer indications for its clinical use. Methods. Eighty 11mm diameter defects of 20mm in depth were created in the cancellous bone within the epiphyseal region of the medial proximal tibia and distal femur of twenty five-year-old sheep. The defects were treated with three doses of an autologous thrombin activated PRP combined with a biphasic calcium phosphate (BCP). Activated
The use of platelet-leukocyte gel (PLG), made from platelet rich plasma, to stimulate bone formation and wound healing has been investigated extensively. As leukocytes play an important role in the innate host-defence, we hypothesised that PLG might also have antimicrobial properties. The purpose of this study was to investigate the antimicrobial activity of PLG against Staphylococcus aureus in an in vitro experiment. To determine the contribution of myeloperoxidase (MPO), present in leukocytes, in this process, MPO release was measured. Platelet rich plasma (PRP) was prepared from whole blood of 6 donors. In this process