Aims. Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. Methods. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures. Results. Out of 1,160 studies initially identified, 39 were included. Most studies (85%) were published between 2020 and 2024, with 82% using publicly available datasets, primarily the
The June 2024 Hip & Pelvis Roundup360 looks at: Machine learning did not outperform conventional competing risk modelling to predict revision arthroplasty; Unravelling the risks: incidence and reoperation rates for femoral fractures post-total hip arthroplasty; Spinal versus general anaesthesia for hip arthroscopy: a COVID-19 pandemic- and opioid epidemic-driven study; Development and validation of a deep-learning model to predict total hip arthroplasty on radiographs; Ambulatory centres lead in same-day hip and knee arthroplasty success; Exploring the impact of smokeless tobacco on total hip arthroplasty outcomes: a deeper dive into postoperative complications.
Aims. Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort. Methods. Patients with full-limb radiographs from the
Knee osteoarthritis (KOA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in KOA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n=51) with Kellgren-Lawrence grade 2–3 KOA through Support Vector Machine (SVM) and a regulation network model (RNM). Clinical descriptors (i.e., pain catastrophism (CA); depression (DE); functionality (FU); joint pain (JP); rigidity (RI); sensitization (SE); synovitis (SY)) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and augmented reality was reviewed. Concerns surrounding meaningful use and appropriate methodological approaches of AI in joint arthroplasty research are summarized. Of the 233 AI-related orthopaedics articles published, 178 (76%) constituted original research, while the rest consisted of editorials or reviews. A total of 52% of original AI-related research concerns hip and knee arthroplasty (n = 92), and a narrative review is described. Three studies were externally validated. Pitfalls surrounding present-day research include conflating vernacular (“AI/machine learning”), repackaging limited registry data, prematurely releasing internally validated prediction models, appraising model architecture instead of inputted data, withholding code, and evaluating studies using antiquated regression-based guidelines. While AI has been applied to a variety of hip and knee arthroplasty applications with limited clinical impact, the future remains promising if the question is meaningful, the methodology is rigorous and transparent, the data are rich, and the model is externally validated. Simple checkpoints for meaningful AI adoption include ensuring applications focus on: administrative support over clinical evaluation and management; necessity of the advanced model; and the novelty of the question being answered. Cite this article:
Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the
Abstract. Objectives. Knee alignment affects both the development and surgical treatment of knee osteoarthritis. Automating femorotibial angle (FTA) and hip-knee-ankle angle (HKA) measurement from radiographs could improve reliability and save time. Further, if the gold-standard HKA from full-limb radiographs could be accurately predicted from knee-only radiographs then the need for more expensive equipment and radiation exposure could be reduced. The aim of this research is to assess if deep learning methods can predict FTA and HKA angle from posteroanterior (PA) knee radiographs. Methods. Convolutional neural networks with densely connected final layers were trained to analyse PA knee radiographs from the
Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and varus alignments, and potential planning of partial knee arthroplasty. Methods. We retrospectively reviewed 639 subjects, aged 45 to 79 years, in the
Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH
Aims. Recent studies have suggested that corticosteroid injections into the knee may harm the joint resulting in cartilage loss and possibly accelerating the progression of osteoarthritis (OA). The aim of this study was to assess whether patients with, or at risk of developing, symptomatic osteoarthritis of the knee who receive intra-articular corticosteroid injections have an increased risk of requiring arthroplasty. Methods. We used data from the
An increased prevalence of osteoarthritis (OA) in post-menopausal women has led to the suggestion that hormonal factors may play a role in the pathogenesis. This study aims to examine if undergoing a hysterectomy, both with retention and removal of ovaries, predisposes women to OA and secondly if the development is influenced by hormone replacement therapy (HRT). Statistical shape modelling (SSM) is a method of image analysis allowing for detection of subtle shape variation described by landmark points. Through the generation of linearly independent modes of variation, each image can be described in terms of numerical scores. 149 radiographs from female participants of the
This analysis determined whether the type and level of physical activity changes during the initial 24 months post-total hip (THR) or total knee replacement (TKR) compared to pre-operative levels, and how this change compares to people without arthroplasty or osteoarthritis. Data from a prospective cohort dataset (Osteoarthritis Initiative dataset) of community-dwelling individuals who had undergone a primary THR or TKR were identified. These were compared to people who had not undergone an arthroplasty and who did not have a diagnosis of hip or knee osteoarthritis during the follow-up period (control). Data were analysed comparing between-group and within-group differences for physical activity (gardening, domestic activities, sports, employment, walking) within the first 24 months post-arthroplasty.Introduction
Patients/Materials & Methods
Patellofemoral joint (PFJ) arthroplasty is traditionally performed using mechanical jigs to align the components, and it is hard to fine tune implant placement for the individual patient. These replacements have not had the same success rate as other forms of total or partial knee replacement surgery1. Our team have developed a computer assisted planning tool that allows alignment of the implant based on measurements of the patient's anatomy from MRI data with the aim of improving the success of patellofemoral joint arthroplasty. When planning a patellofemoral joint arthroplasty, one must start from the premise that the original joint is either damaged as a result of osteoarthritis, or is dysplastic in some way, deviating from a normal joint. The research aimed to plan PFJ arthroplasty using knowledge of the relationship between a normal PFJ (trochlear groove, trochlea axis and articular surfaces) and other aspects of the knee2, allowing the plan to be estimated from unaffected bone surfaces, within the constraints of the available trochlea. In order to establish a patient specific trochlea model a method was developed to automatically compute an average shape of the distal femur from normal distal femur STL files (Fig.1). For that MRI scans of 50 normal knees from
Introduction. Despite generally excellent patient outcomes for Total Knee Arthroplasty (TKA), there remains a contingent of patients, up to 20%, who are not satisfied with the outcome of their procedure. (Beswick, 2012) There has been a large amount of research into identifying the factors driving these poor patient outcomes, with increasing recognition of the role of non-surgical factors in predicting achieved outcomes. However, most of this research has been based on single database or registry sources and so has inherited the limitations of its source data. The aim of this work is to develop a predictive model that uses expert knowledge modelling in conjunction with data sources to build a predictive model of TKR patient outcomes. Method. The preliminary Bayesian Belief Network (BBN) developed and presented here uses data from the
Introduction. Pain related to knee osteoarthritis (OA) is a complex phenomenon that cannot be fully explained by radiographic disease severity. We hypothesized that pain phenotypes are likely to be derived from a confluence of factors across multiple domains: knee OA pathology, psychology, and neurophysiological pain processing. The purpose of this study was to identify distinct phenotypes of knee OA, using measures from the proposed domains. Methods. Data from 3494 subjects participating in the
Purpose. It is well known that meniscus extrusion is associated with structural progression of knee OA. However, it is unknown whether medial meniscus extrusion promotes cartilage loss in specific femorotibial subregions, or whether it is associated with a increase in cartilage thickness loss throughout the entire femorotibial compartment. We applied quantitative MRI-based measurements of subregional cartilage thickness (change) and meniscus position, to address the above question in knees with and without radiographic joint space narrowing (JSN). Methods. 60 participants with unilateral medial OARSI JSN grade 1–3, and contralateral knee OARSI JSN grade 0 were drawn from the
We studied whether the presence of lateral osteophytes
on plain radiographs was a predictor for the quality of cartilage
in the lateral compartment of patients with varus osteoarthritic
of the knee (Kellgren and Lawrence grade 2 to 3). The baseline MRIs of 344 patients from the Osteoarthritis Initiative
(OAI) who had varus osteoarthritis (OA) of the knee on hip-knee-ankle
radiographs were reviewed. Patients were categorised using the Osteoarthritis
Research Society International (OARSI) osteophyte grading system
into 174 patients with grade 0 (no osteophytes), 128 grade 1 (mild
osteophytes), 28 grade 2 (moderate osteophytes) and 14 grade 3 (severe
osteophytes) in the lateral compartment (tibia). All patients had
Kellgren and Lawrence grade 2 or 3 arthritis of the medial compartment.
The thickness and volume of the lateral cartilage and the percentage
of full-thickness cartilage defects in the lateral compartment was
analysed. There was no difference in the cartilage thickness or cartilage
volume between knees with osteophyte grades 0 to 3. The percentage
of full-thickness cartilage defects on the tibial side increased
from <
2% for grade 0 and 1 to 10% for grade 3. The lateral compartment cartilage volume and thickness is not
influenced by the presence of lateral compartment osteophytes in
patients with varus OA of the knee. Large lateral compartment osteophytes
(grade 3) increase the likelihood of full-thickness cartilage defects
in the lateral compartment. Cite this article: