Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 218 - 226
15 Mar 2024
Voigt JD Potter BK Souza J Forsberg J Melton D Hsu JR Wilke B

Aims. Prior cost-effectiveness analyses on osseointegrated prosthesis for transfemoral unilateral amputees have analyzed outcomes in non-USA countries using generic quality of life instruments, which may not be appropriate when evaluating disease-specific quality of life. These prior analyses have also focused only on patients who had failed a socket-based prosthesis. The aim of the current study is to use a disease-specific quality of life instrument, which can more accurately reflect a patient’s quality of life with this condition in order to evaluate cost-effectiveness, examining both treatment-naïve and socket refractory patients. Methods. Lifetime Markov models were developed evaluating active healthy middle-aged male amputees. Costs of the prostheses, associated complications, use/non-use, and annual costs of arthroplasty parts and service for both a socket and osseointegrated (OPRA) prosthesis were included. Effectiveness was evaluated using the questionnaire for persons with a transfemoral amputation (Q-TFA) until death. All costs and Q-TFA were discounted at 3% annually. Sensitivity analyses on those cost variables which affected a change in treatment (OPRA to socket, or socket to OPRA) were evaluated to determine threshold values. Incremental cost-effectiveness ratios (ICERs) were calculated. Results. For treatment-naïve patients, the lifetime ICER for OPRA was $279/quality-adjusted life-year (QALY). For treatment-refractory patients the ICER was $273/QALY. In sensitivity analysis, the variable thresholds that would affect a change in the course of treatment based on cost (from socket to OPRA), included the following for the treatment-naïve group: yearly replacement components for socket > $8,511; cost yearly replacement parts OPRA < $1,758; and for treatment-refractory group: yearly replacement component for socket of > $12,467. Conclusion. The use of the OPRA prosthesis in physically active transfemoral amputees should be considered as a cost-effective alternative in both treatment-naïve and treatment-refractory socket prosthesis patients. Disease-specific quality of life assessments such as Q-TFA are more sensitive when evaluating cost-effectiveness. Cite this article: Bone Jt Open 2024;5(3):218–226


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 55 - 63
1 Jan 2020
Hagberg K Ghassemi Jahani S Kulbacka-Ortiz K Thomsen P Malchau H Reinholdt C

Aims

The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis.

Methods

In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 527 - 534
1 Apr 2018
Hansson E Hagberg K Cawson M Brodtkorb TH

Aims

The aim of this study was to compare the cost-effectiveness of treatment with an osseointegrated percutaneous (OI-) prosthesis and a socket-suspended (S-) prosthesis for patients with a transfemoral amputation.

Patients and Methods

A Markov model was developed to estimate the medical costs and changes in quality-adjusted life-years (QALYs) attributable to treatment of unilateral transfemoral amputation over a projected period of 20 years from a healthcare perspective. Data were collected alongside a prospective clinical study of 51 patients followed for two years.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 192 - 192
1 Sep 2012
Tomaszewski P Verdonschot N Bulstra S Verkerke G
Full Access

For amputated patients, direct attachment of upper leg prosthesis to the skeletal system by a percutaneous implant is an alternative solution to the traditional socket fixation. Currently available implants, the OPRA system (Integrum AB, Göteborg, Sweden) and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) [1-2] allow overcoming common soft tissue problems of conventional socket fixation and provide better control of the prosthetic limb [3], higher mobility and comfort [2, 4]. However, restraining issues such as soft-tissue infections, peri-prosthetic bone fractures [3, 5–8] and considerable bone loss around the stem [9], which might lead to implant's loosening, are present. Finally, a long a residual limb is required for implant fitting. In order to overcome the limiting biomechanical issues of the current designs, a new concept of the direct intramedullary fixation was developed. The aim was to restore the natural load transfer in the femur and allow implantations in short femur remnants (Figure 1). We hypothesize that the new design will reduce the peri-prosthetic bone failure risk and adverse bone remodeling. Generic CT-based finite element models of an intact femoral bone and amputated bones implanted with 3 analyzed implants were created for the study. Models were loaded with two loading cases from a normal walking obtained from the experimental measurements with the OPRA device [10-11]. Periprosthetic bone failure risk was evaluated by considering the von Mises stress criterion [12-14]. Subsequently the strain adaptive bone remodeling theory was used to predict long-term changes in bone mineral density (BMD) around the implants. The bone mineral content (BMC) change was measured around implants and the results were visualized in the form of DXA scans. The OPRA and the ISP implants induced the high stress concentration in the proximal region decreasing in the distal direction to values below physiological levels as compared with the intact bone. The stresses around the new design were more uniformly distributed along the cortex and resembled better the intact case. Consequently, the bone failure risk was reduced as compared to the OPRA and the ISP implants. The adaptive bone remodeling simulations showed high bone resorption around distal parts of the OPRA and the ISP implants in the distal end of the femur (on average −75% ISP to −78% OPRA after 60 months). The bone remodeling simulation did not reveal any bone loss around the new design, but more bone densification was seen (Figure 2). In terms of total bone mineral content (BMC) the OPRA and the ISP implants induced only a short-term bone densification in contrast to the new design, which provoked a steady increase in the BMC over the whole analyzed period (Figure 3). In conclusion, we have seen that the new design offers much better bone maintenance and lower failure probability than the current osseointegrated trans-femoral prostheses. This positive outcome should encourage further developments of the presented concept, which in our opinion has a potential to considerably improve safety of the rehabilitation with the direct fixation implants and allow treatment of patients with short stumps


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XIV | Pages 55 - 55
1 Apr 2012
Berlin Ö Bergh P Dalen M Eriksson S Hagberg K Inerot S Gunterberg B Brånemark R
Full Access

Aim. The first osseointegrated transfemoral amputation prosthesis operation was performed in Gothenburg in 1990. The aim is improving quality of life for patients who cannot use conventional socket prosthesis. In 1999 the prospective OPRA-study (Osseointegrated Prosthesis for Rehabiliation of Amputees) was initiated with standardized surgery, equipment and rehabilitation program. Method. The surgery consists of a two-stage procedure. At the primary surgery (S1), a titanium screw (the fixture) is inserted into the remaining diaphyseal bone. The fixture is 80 mm long with a diameter of 16–20 mm (+0.5 mm increments). The patient is hospitalized 5-7 days. At the secondary surgery (S2), six months later, an abutment is inserted into the fixture. The abutment has a hexagonal press-fitting into the fixture and is secured by an abutment screw. The patient remains hospitalized 10–12 days. Gradual increase of load and activity is initiated over a 6 month period. Results. The OPRA study includes 51 patients with 55 implants. Follow-up time has been set to minimum 2 years. The OPRA study will be evaluated in June 2010. 32 of the 51 patients have been followed for 2 years or more. Four implants have been removed due to loosening/infection. No patient has been lost to follow-up. Preliminary data shows that the success rate so far is 93% (51/55). Conclusion. Development of this new concept has to be carefully monitored and controlled. Once a standard technique was developed a drop in the complication rate was noted. Although deep infection and fixture loosening is the most feared complication, so far the most encountered one is late deformation of the abutment due to overload since the patients activity level is significantly increased caused by the good prosthetic function allowing the patient to use the prosthesis 12–15 hours daily, 7 days a week