Abstract. Background. Osteochondral allograft (OCA) transplantation is a clinically and cost-effective option for symptomatic cartilage defects. In 2017 we initiated a program for OCA transplantation for complex chondral and osteochondral defects as a UK tertiary referral centre. Aim. To characterise the complications, re-operation rate, graft survivorship and clinical outcomes of knee OCA transplantation. Methodology. Analysis of a prospectively maintained database of patients treated with primary OCA transplantation from 2017 to 2021 with a minimum of one-year follow-up. Patient reported outcome measures (PROMs), complications, re-operations and failures were evaluated. Results. 37 patients with 37 knee OCA procedures were included (mean age 31.6 years [16–49 years]). Mean BMI 26.6 kg/m2 (19.1–35.9 kg/m2). The mean chondral defect size was 3cm2 (1.2–7.3 cm2). Mean duration of follow-up was 3.1 years (1–5.3 years). 16 patients underwent
Anterior cruciate ligament (ACL) graft failure from rupture, attenuation, or malposition may cause recurrent subjective instability and objective laxity, and occurs in 3% to 22% of ACL reconstruction (ACLr) procedures. Revision ACLr is often indicated to restore knee stability, improve knee function, and facilitate return to cutting and pivoting activities. Prior to reconstruction, a thorough clinical and diagnostic evaluation is required to identify factors that may have predisposed an individual to recurrent ACL injury, appreciate concurrent intra-articular pathology, and select the optimal graft for revision reconstruction. Single-stage revision can be successful, although a staged approach may be used when optimal tunnel placement is not possible due to the position and/or widening of previous tunnels. Revision ACLr often involves concomitant procedures such as meniscal/chondral treatment, lateral extra-articular augmentation, and/or osteotomy. Although revision ACLr reliably restores knee stability and function, clinical outcomes and reoperation rates are worse than for primary ACLr. Cite this article:
Aims.
Abstract. Objectives. Meniscus allograft and synthetic meniscus scaffold (Actifit. ®. ) transplantation have shown promising outcomes for symptoms relief in patients with meniscus deficient knees. Untreated chondral defects can place excessive load onto meniscus transplants and cause early graft failure. We hypothesised that combined ACI and allograft or synthetic meniscus replacement might provide a solution for meniscus deficient individuals with co-existing lesions in cartilage and meniscus. Methods. We retrospectively collected data from 17 patients (16M, 1F, aged 40±9.26) who had ACI and
Background. The meniscal deficient knee often exists in the setting of associated pathology including instability, malalignment and chondral injury.
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.Objectives
Methods
The aim of this study was to report the outcome of femoral condylar fresh osteochondral allografts (FOCA) with concomitant realignment osteotomy with a focus on graft survivorship, complications, reoperation, and function. We identified 60 patients (16 women, 44 men) who underwent unipolar femoral condylar FOCA with concomitant realignment between 1972 and 2012. The mean age of the patients was 28.9 years (10 to 62) and the mean follow-up was 11.4 years (2 to 35). Failure was defined as conversion to total knee arthroplasty, revision allograft, or graft removal. Clinical outcome was evaluated using the modified Hospital for Special Surgery (mHSS) score.Aims
Patients and Methods
Aims.
INTRODUCTION. Meniscal tears are very common and treated surgically by suturing or partial or total meniscectomy. After meniscectomy, the tibiofemoral contact area is decreased whih leads to higher contact stresses associated with clinical symproms and a faster progression of tibiofemoral osteoarthritis. Besides
Subtotal or total meniscectomy in the medial or lateral compartment
of the knee results in a high risk of future osteoarthritis. Meniscal
allograft transplantation has been performed for over thirty years
with the scientifically plausible hypothesis that it functions in
a similar way to a native meniscus. It is thought that a meniscal
allograft transplant has a chondroprotective effect, reducing symptoms
and the long-term risk of osteoarthritis. However, this hypothesis has
never been tested in a high-quality study on human participants.
This study aims to address this shortfall by performing a pilot
randomised controlled trial within the context of a comprehensive
cohort study design. Patients will be randomised to receive either meniscal transplant
or a non-operative, personalised knee therapy program. MRIs will
be performed every four months for one year. The primary endpoint
is the mean change in cartilage volume in the weight-bearing area
of the knee at one year post intervention. Secondary outcome measures
include the mean change in cartilage thickness, T2 maps, patient-reported
outcome measures, health economics assessment and complications.Objectives
Methods
The anatomy and microstructure of the menisci
allow the effective distribution of load across the knee. Meniscectomy
alters the biomechanical environment and is a potent risk factor
for osteoarthritis. Despite a trend towards meniscus-preserving
surgery, many tears are irreparable, and many repairs fail. .
Purpose. to evaluate the radial displacement of
Background. There is growing evidence in literature that
We compared extrusion of the allograft after
medial and lateral meniscal allograft transplantation and examined
the correlation between the extent of extrusion and the clinical
outcome. A total of 73 lateral and 26 medial meniscus allografts
were evaluated by MRI at a mean of 32 months (24 to 59) in 99 patients
(67 men, 32 women) with a mean age of 35 years (21 to 52). The absolute
values and the proportional widths of extruded menisci as a percentage were
measured in coronal images that showed maximum extrusion. Functional
assessments were performed using Lysholm scores. The mean extrusion
was 4.7 mm (1.8 to 7.7) for lateral menisci and 2.9 mm (1.2 to 6.5)
for medial menisci (p <
0.001), and the mean percentage extrusions
were 52.0% (23.8% to 81.8%) and 31.2% (11.6% to 63.4%), respectively
(p <
0.001). Mean Lysholm scores increased significantly from
49.0 (10 to 83) pre-operatively to 86.6 (33 to 99) at final follow-up
for lateral menisci (p = 0.001) and from 50.9 (15 to 88) to 88.3
(32 to 100) for medial menisci (p <
0.001). The final mean Lysholm
scores were similar in the two groups (p = 0.312). Furthermore,
Lysholm scores were not found to be correlated with degree of extrusion
(p = 0.242). Thus, transplanted lateral menisci extrude more significantly
than transplanted medial menisci. However, the clinical outcome
after meniscal transplantation was not found to be adversely affected
by extrusion of the allograft.
We describe 119