Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 8 - 8
2 Jan 2024
Habash M Cawley D Devitt A
Full Access

Intra-Discal Vacuum Phenomenon (IDVP) represents an intradiscal nitrogen gas accumulation where a cavity opens in a supine position, lowering intra-discal pressure and generating a bubble. IDVP has been observed in up to 20% of elderly patients and reported in almost 50% of chronic LBP patients. With a highly accurate detection on CT, its significance lacks clarity and consideration within normative data. IDVP occurs with patterns of lumbar and/or lumbopelvic morphology and associated diagnoses. Over-60s population based sample of 2020 unrelated CT abdomen scans without acute spinal presentations, with sagittal reconstructions, inclusive of T12 to femoral heads, were analyzed for IDVP and pelvic incidence (PI). Subjects with diagnostic morphological associations of the lumbar spine, including previous fracture, autofusion, transitional vertebra and listhesis, were selected out and analyzed separately. Subjects were then equally grouped into low, medium and high PI. Prevalence of lumbar spine IDVP is 41.3%. 125 cases were excluded. 1603 subjects yielded 663 IDVP. This was increased in severity towards the lumbosacral junction (L1L2 9.4%, L2L3 10.9%, L3L4 13.7%, L4L5 19.9%, L5S1 28.5%) and those with low PI, while distribution was more even with high PI. 292 had positive diagnostic associations, which were more likely to occur at the level of isthmic spondylolisthesis, adjacent to a previous fracture or suprajacent to lumbosacral transitional vertebra (p<0.05). This study has identified normative values for prevalence and severity of IDVP in a normal aging population. Morphological patterns that influence the pattern of IVDP such as pelvic incidence and diagnostic associations provide novel insights to the function of the aging spine


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 110 - 110
11 Apr 2023
Lee K Lin J Lynch J Smith P
Full Access

Variations in pelvic anatomy are a major risk factor for misplaced percutaneous sacroiliac screws used to treat unstable posterior pelvic ring injuries. A better understanding of pelvic morphology improves preoperative planning and therefore minimises the risk of malpositioned screws, neurological or vascular injuries, failed fixation or malreduction. Hence a classification system which identifies the clinically important anatomical variations of the sacrum would improve communication among pelvic surgeons and inform treatment strategy. 300 Pelvic CT scans from skeletally mature trauma patients that did not have pre-existing posterior pelvic pathology were identified. Axial and coronal transosseous corridor widths at both S1 and S2 were recorded. Additionally, the S1 lateral mass angle were also calculated. Pelvises were classified based upon the sacroiliac joint (SIJ) height using the midpoint of the anterior cortex of L5 as a reference point. Four distinct types could be identified:. Type-A – SIJ height is above the midpoint of the anterior cortex of the L5 vertebra. Type-B – SIJ height is between the midpoint and the lowest point of the anterior cortex of the L5 vertebra. Type-C – SIJ height is below the lowest point of the anterior cortex of the L5 vertebra. Type-D – a subgroup for those with a lumbosacral transitional vertebra, in particular a sacralised L5. Differences in transosseous corridor widths and lateral mass angles between classification types were assessed using two-way ANOVAs. Type-B was the most common pelvic type followed by Type-A, Type-C, and Type-D. Significant differences in the axial and coronal corridors was observed for all pelvic types at each level. Lateral mass angles increased from Types-A to C, but were smaller in Type-D. This classification system offers a guide to surgeons navigating variable pelvic anatomy and understanding how it is associated with the differences in transosseous sacral corridors. It can assist surgeons’ preoperative planning of screw position, choice of fixation or the need for technological assistance


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 92 - 92
23 Feb 2023
Lee S Lin J Lynch J Smith P
Full Access

Dysmorphic pelves are a known risk factor for malpositioned iliosacral screws. Improved understanding of pelvic morphology will minimise the risk of screw misplacement, neurovascular injuries and failed fixation. Existing classifications for sacral anatomy are complex and impractical for clinical use. We propose a CT-based classification using variations in pelvic anatomy to predict the availability of transosseous corridors across the sacrum. The classification aims to refine surgical planning which may reduce the risk of surgical complications. The authors postulated 4 types of pelves. The “superior most point of the sacroiliac joint” (sSIJ) typically corresponds with the mid-lower half of the L5 vertebral body. Hence, “the anterior cortex of L5” (L5. a. ) was divided to reference 3 distinct pelvic groups. A 4. th. group is required to represent pelves with a lumbosacral transitional vertebra. The proposed classification:. A – sSIJ is above the midpoint of L5. a. B – sSIJ is between the midpoint and the lowest point of L5. a. C – sSIJ is below the lowest point of L5. a. D – pelves with a lumbosacral transitional vertebra. Specific measures such as the width of the S1 and S2 axial and coronal corridors and the S1 lateral mass angles were used to differentiate between pelvic types. Three-hundred pelvic CT scans were classified into their respective types. Analysis of the specific measures mentioned above illustrated the significant difference between each pelvic type. Changes in the size of S1 and S2 axial corridors formed a pattern that was unique for each pelvic type. The intra- and inter-observer ratings were 0.97 and 0.95 respectively. Distinct relationships between the sizes of S1 and S2 axial corridors informed our recommendations on trans-sacral or iliosacral fixation, number and orientation of screws for each pelvic type. This classification utilises variations in the posterior pelvic ring to offer a planning guide for the insertion of iliosacral screws


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1351 - 1357
1 Aug 2021
Sun J Chhabra A Thakur U Vazquez L Xi Y Wells J

Aims. Some patients presenting with hip pain and instability and underlying acetabular dysplasia (AD) do not experience resolution of symptoms after surgical management. Hip-spine syndrome is a possible underlying cause. We hypothesized that there is a higher frequency of radiological spine anomalies in patients with AD. We also assessed the relationship between radiological severity of AD and frequency of spine anomalies. Methods. In a retrospective analysis of registry data, 122 hips in 122 patients who presented with hip pain and and a final diagnosis of AD were studied. Two observers analyzed hip and spine variables using standard radiographs to assess AD. The frequency of lumbosacral transitional vertebra (LSTV), along with associated Castellvi grade, pars interarticularis defect, and spinal morphological measurements were recorded and correlated with radiological severity of AD. Results. Out of 122 patients, 110 (90.2%) were female and 12 (9.8%) were male. We analyzed the radiographs of 122 hips (59 (48.4%) symptomatic left hips, and 63 (51.6%) symptomatic right hips). Average age at time of presentation was 34.2 years (SD 11.2). Frequency of LSTV was high (39% to 43%), compared to historic records from the general population, with Castellvi type 3b being the most common (60% to 63%). Patients with AD have increased L4 and L5 interpedicular distance compared to published values. Frequency of pars interarticularis defect was 4%. Intraclass correlation coefficient for hip and spine variables assessed ranged from good (0.60 to 0.75) to excellent (0.75 to 1.00). Severity of AD did not demonstrate significant correlation with frequency of radiological spine anomalies. Conclusion. Patients with AD have increased frequency of spinal anomalies seen on standard hip radiographs. However, there exists no correlation between radiological severity of AD and frequency of spine anomalies. In managing AD patients, clinicians should also assess spinal anomalies that are easily found on standard hip radiographs. Cite this article: Bone Joint J 2021;103-B(8):1351–1357


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1301 - 1308
1 Jul 2021
Sugiura K Morimoto M Higashino K Takeuchi M Manabe A Takao S Maeda T Sairyo K

Aims

Although lumbosacral transitional vertebrae (LSTV) are well-documented, few large-scale studies have investigated thoracolumbar transitional vertebrae (TLTV) and spinal numerical variants. This study sought to establish the prevalence of numerical variants and to evaluate their relationship with clinical problems.

Methods

A total of 1,179 patients who had undergone thoracic, abdominal, and pelvic CT scanning were divided into groups according to the number of thoracic and lumbar vertebrae, and the presence or absence of TLTV or LSTV. The prevalence of spinal anomalies was noted. The relationship of spinal anomalies to clinical symptoms (low back pain, Japanese Orthopaedic Association score, Roland-Morris Disability Questionnaire) and degenerative spondylolisthesis (DS) was also investigated.


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1533 - 1537
1 Nov 2013
Farshad M Aichmair A Hughes AP Herzog RJ Farshad-Amacker NA

The purpose of this study was to devise a simple but reliable radiological method of identifying a lumbosacral transitional vertebra (LSTV) with a solid bony bridge on sagittal MRI, which could then be applied to a lateral radiograph.

The vertical mid-vertebral angle (VMVA) and the vertical anterior vertebral angle (VAVA) of the three most caudal segments of the lumbar spine were measured on MRI and/or on a lateral radiograph in 92 patients with a LSTV and 94 controls, and the differences per segment (Diff-VMVA and Diff-VAVA) were calculated. The Diff-VMVA of the two most caudal vertebrae was significantly higher in the control group (25° (sd 8) than in patients with a LSTV (type 2a+b: 16° (sd 9), type 3a+b: -9° (sd 10), type 4: -5° (sd 7); p < 0.001). A Diff-VMVA of ≤ +10° identified a LSTV with a solid bony bridge (type 3+4) with a sensitivity of 100% and a specificity of 89% on MRI and a sensitivity of 94% and a specificity of 74% on a lateral radiograph. A sensitivity of 100% could be achieved with a cut-off value of 28° for the Diff-VAVA, but with a lower specificity (76%) on MRI than with Diff-VMVA.

Using this simple method (Diff-VMVA ≤ +10°), solid bony bridging of the posterior elements of a LSTV, and therefore the first adjacent mobile segment, can be easily identified without the need for additional imaging.

Cite this article: Bone Joint J 2013;95-B:1533–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 687 - 691
1 May 2005
Aihara T Takahashi K Ogasawara A Itadera E Ono Y Moriya H

We studied 52 patients, each with a lumbosacral transitional vertebra. Using MRI we found that the lumbar discs immediately above the transitional vertebra were significantly more degenerative and those between the transitional vertebrae and the sacrum were significantly less degenerative compared with discs at other levels. We also performed an anatomical study using 70 cadavers. We found that the iliolumbar ligament at the level immediately above the transitional vertebra was thinner and weaker than it was in cadavers without a lumbosacral transitional vertebra. Instability of the vertebral segment above the transitional vertebra because of a weak iliolumbar ligament could lead to subsequent disc degeneration which may occur earlier than at other disc levels. Some stability between the transitional vertebra and the sacrum could be preserved by the formation of either an articulation or by bony union between the vertebra and the sacrum through its transverse process. This may protect the disc from further degeneration in the long term