Advertisement for orthosearch.org.uk
Results 1 - 20 of 92
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 94 - 94
23 Feb 2023
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A
Full Access

Total knee arthroplasty with a rotating hinge knee with carbon-fibre-reinforced (CFR)-PEEK as an alternative bushing material with enhanced creep, wear and fatigue behaviour has been clinically established [1-4]. The objective of our study was to compare results from in vitro biotribological characterisation to ex vivo findings on a retrievals.

A modified in vitro wear simulation based on ISO 14243-1 was performed for 5 million cycles on rotating hinge knee (RHK) designs (EnduRo®) out of cobalt-chromium and ZrN-multilayer ceramic coating. The rotational & flexion axles-bushings and the flanges are made of CFR-PEEK with 30% polyacrylonitrile fibre content.

Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN-multilayer in regard to loosening torques, microscopic surface analysis, distinction between different wear modes and classification with a modified HOOD-score has been performed.

For the RHK design with the polyethylene gliding surface and bushings and flanges made out of CFR-PEEK, a cumulative volumetric wear was measured to be 12.9±3.95 mm3 in articulation to cobalt-chromium and 1.3±0.21 mm3 to ZrN-multilayer coating - a significant 9.9-fold decrease (p=0.0072).

For the CFR-PEEK flexion bushing and flanges the volumetric wear rates were 2.3±0.48 mm3/million cycles (cobalt-chromium) and 0.21±0.02 mm3/million cycles (ZrN-multilayer) (p=0.0016). The 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which is in accordance to the time in vivo of 12–60 months of the retrieved RHK components [5]. The main wear modes were comparable between retrievals and in vitro specimens, whereby the size of affected area on the retrieved components showed a higher variation.

For the EnduRo® RHK design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN-multilayer coating.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1695 - 1701
1 Nov 2021
Currier JH Currier BH Abdel MP Berry DJ Titus AJ Van Citters DW

Aims. Wear of the polyethylene (PE) tibial insert of total knee arthroplasty (TKA) increases the risk of revision surgery with a significant cost burden on the healthcare system. This study quantifies wear performance of tibial inserts in a large and diverse series of retrieved TKAs to evaluate the effect of factors related to the patient, knee design, and bearing material on tibial insert wear performance. Methods. An institutional review board-approved retrieval archive was surveyed for modular PE tibial inserts over a range of in vivo duration (mean 58 months (0 to 290)). Five knee designs, totalling 1,585 devices, were studied. Insert wear was estimated from measured thickness change using a previously published method. Linear regression statistical analyses were used to test association of 12 patient and implant design variables with calculated wear rate. Results. Five patient-specific variables and seven implant-specific variables were evaluated for significant association with lower insert wear rate. Six were significant when controlling for other factors: greater patient age, female sex, shorter duration in vivo, polished tray, highly cross-linked PE (HXLPE), and constrained knee design. Conclusion. This study confirmed that knee wear rate increased with duration in vivo. Older patients and females had significantly lower wear rates. Polished modular tibial tray surfaces, HXLPE, and constrained TKA designs were device design factors associated with significantly reduced wear rate. Cite this article: Bone Joint J 2021;103-B(11):1695–1701


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2021
Rahman F Chan H Zapata G Walker P
Full Access

Background. Artificial total knee designs have revolutionized over time, yet 20% of the population still report dissatisfaction. The standard implants fail to replicate native knee kinematic functionality due to mismatch of condylar surfaces and non-anatomically placed implantation. (Daggett et al 2016; Saigo et al 2017). It is essential that the implant surface matches the native knee to prevent Instability and soft tissue impingement. Our goal is to use computational modeling to determine the ideal shapes and orientations of anatomically-shaped components and test the accuracy of fit of component surfaces. Methods. One hundred MRI scans of knees with early osteoarthritis were obtained from the NIH Osteoarthritis Initiative, converted into 3D meshes, and aligned via an anatomic coordinate system algorithm. Geomagic Design X software was used to determine the average anterior-posterior (AP) length. Each knee was then scaled in three dimensions to match the average AP length. Geomagic's least-squares algorithm was used to create an average surface model. This method was validated by generating a statistical shaped model using principal component analysis (PCA) to compare to the least square's method. The averaged knee surface was used to design component system sizing schemes of 1, 3, 5, and 7 (fig 1). A further fifty arthritic knees were modeled to test the accuracy of fit for all component sizing schemes. Standard deviation maps were created using Geomagic to analyze the error of fit of the implant surface compared to the native femur surface. Results. The average shape model derived from Principal Component Analysis had a discrepancy of 0.01mm and a standard deviation of 0.05mm when compared to Geomagic least squares. The bearing surfaces showed a very close fit within both models with minimal errors at the sides of the epicondylar line (fig 2). The surface components were lined up posteriorly and distally on the 50 femurs. Statistical Analysis of the mesh deviation maps between the femoral condylar surface and the components showed a decrease in deviation with a larger number of sizes reducing from 1.5 mm for a 1-size system to 0.88 mm for a 7-size system (table 1). The femoral components of a 5 or 7-size system showed the best fit less than 1mm. The main mismatch was on the superior patella flange, with maximum projection or undercut of 2 millimeters. Discussion and Conclusion. The study showed an approach to total knee design and technique for a more accurate reproduction of a normal knee. A 5 to 7 size system was sufficient, but with two widths for each size to avoid overhang. Components based on the average anatomic shapes were an accurate fit on the bearing surfaces, but surgery to 1-millimeter accuracy was needed. The results showed that an accurate match of the femoral bearing surfaces could be achieved to better than 1 millimeter if the component geometry was based on that of the average femur. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 9, Issue 11 | Pages 768 - 777
2 Nov 2020
Huang C Lu Y Hsu L Liau J Chang T Huang C

Aims. The material and design of knee components can have a considerable effect on the contact characteristics of the tibial post. This study aimed to analyze the stress distribution on the tibial post when using different grades of polyethylene for the tibial inserts. In addition, the contact properties of fixed-bearing and mobile-bearing inserts were evaluated. Methods. Three different grades of polyethylene were compared in this study; conventional ultra high molecular weight polyethylene (UHMWPE), highly cross-linked polyethylene (HXLPE), and vitamin E-stabilized polyethylene (VEPE). In addition, tibial baseplates with a fixed-bearing and a mobile-bearing insert were evaluated to understand differences in the contact properties. The inserts were implanted in neutral alignment and with a 10° internal malrotation. The contact stress, von Mises stress, and equivalent plastic strain (PEEQ) on the tibial posts were extracted for comparison. Results. The stress and strain on the tibial post for the three polyethylenes greatly increased when the insert was placed in malrotation, showing a 38% to 56% increase in von Mises stress and a 335% to 434% increase in PEEQ. The VEPE insert had the lowest PEEQ among the three materials. The mobile-bearing design exhibited a lower increase in stress and strain around the tibial posts than the fixed-bearing design. Conclusion. Using VEPE for the tibial component potentially eliminates the risk of material permanent deformation. The mobile-bearing insert can help to avoid a dramatic increase in plastic strain around the tibial post in cases of malrotation. The mobility allows the pressure to be distributed on the tibial post and demonstrated lower stresses with all three polyethylenes simulated. Cite this article: Bone Joint Res 2020;9(11):768–777


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 49 - 49
1 Jul 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar MJ Turgeon T
Full Access

The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivo TKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 35% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years, supine, 16.3 mm3/yr (SD: 27.8) and 11.2 mm3/yr (SD: 18.5) versus standing, 51.3 mm3/yr (SD: 55.9) and 32.7 mm3/yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm3/yr) and 71% of patients at 2 years (Avg: 48.9 mm3/yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Volumetric, weight-bearing wear measurement of TKR using model-based RSA determined an average of 33 mm3/yr at 2 years post-surgery for a modern, non-cross-linked polyethylene bearing. This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, unknown patient activity level, and inability to distinguish wear from plastic creep or deformation under load. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. Further work is needed to validate the accuracy of the measurements in vivo


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 40 - 40
1 Jul 2020
Bhaskar D Higgins M Mosby D Townsend R Harrison T
Full Access

Literature debates whether fluid aspirates for suspected PJI should undergo prolonged incubation for cultures. We looked at sensitivity and specificity of 14-day cultures, compared to 7-days, for aspirates from prosthetic hips and knees. Design and methods. Conducted at a quaternary referral centre for PJIs from Jan 2017 to July 2019. Suspected PJIs who underwent aspiration, incubated 14 days and later surgical intervention with minimum three tissue samples were included. Results. 176 aspirates were included. This is an increased number compared to our historic figures (average 88 Vs 48 pts/yr). 47 patients had fluid and tissue positive (true positive), 20 fluid +ive but tissue -ive (false positive), 98 fluid and tissue -ive (true negative) and 15 fluid negative but tissue +ive (False negative). Thus, sensitivity 76%, specificity 83%, positive predictive value70% and negative predictive value 87%. Of 88 positive aspirates, only 75% were within 7-day cultures. Low virulence organisms as Propionibacterium acnes and coagulase negative staph were grown later. Of 48 with only one tissue sample positive, 38 were culture-negative on aspiration and 6 grew different organisms on aspirate and tissues. Also, as many were cultured later, it suggests contamination. Conclusion. Increased numbers reflect quaternary referral nature of institution and increasing PJI load. Modest drop in sensitivity and specificity of 14-day cultures compared to 7-day(84 and 85% respectively) is due to higher false negatives. Contamination contributes to false-ive as more tissue samples become positive (there were 1076 tissue samples due to multiple sampling Vs 176 aspirates). Higher tissue yield may also be because they are more representative. Effect of antibiotic use between samples cannot be determined. Organism profile suggest14-day culture produces more contaminant growth despite a well-equipped microbiology lab with laminar airflow for subcultures. Caution in interpreting 14-day results in diagnosis of PJI of Hip and Knee is advised


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 66 - 72
1 Jun 2020
Knapp P Weishuhn L Pizzimenti N Markel DC

Aims

Postoperative range of movement (ROM) is an important measure of successful and satisfying total knee arthroplasty (TKA). Reduced postoperative ROM may be evident in up to 20% of all TKAs and negatively affects satisfaction. To improve ROM, manipulation under anaesthesia (MUA) may be performed. Historically, a limited ROM preoperatively was used as the key harbinger of the postoperative ROM. However, comorbidities may also be useful in predicting postoperative stiffness. The goal was to assess preoperative comorbidities in patients undergoing TKA relative to incidence of postoperative MUA. The hope is to forecast those who may be at increased risk and determine if MUA is an effective form of treatment.

Methods

Prospectively collected data of TKAs performed at our institution’s two hospitals from August 2014 to August 2018 were evaluated for incidence of MUA. Comorbid conditions, risk factors, implant component design and fixation method (cemented vs cementless), and discharge disposition were analyzed. Overall, 3,556 TKAs met the inclusion criteria. Of those, 164 underwent MUA.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 426 - 433
1 Apr 2020
Boettner F Sculco P Faschingbauer M Rueckl K Windhager R Kasparek MF

Aims

To compare patients undergoing total knee arthroplasty (TKA) with ≤ 80° range of movement (ROM) operated with a 2 mm increase in the flexion gap with matched non-stiff patients with at least 100° of preoperative ROM and balanced flexion and extension gaps.

Methods

In a retrospective cohort study, 98 TKAs (91 patients) with a preoperative ROM of ≤ 80° were examined. Mean follow-up time was 53 months (24 to 112). All TKAs in stiff knees were performed with a 2 mm increased flexion gap. Data were compared to a matched control group of 98 TKAs (86 patients) with a mean follow-up of 43 months (24 to 89). Knees in the control group had a preoperative ROM of at least 100° and balanced flexion and extension gaps. In all stiff and non-stiff knees posterior stabilized (PS) TKAs with patellar resurfacing in combination with adequate soft tissue balancing were used.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 73 - 73
1 Feb 2020
Gascoyne T Parashin S Teeter M Bohm E Laende E Dunbar M Turgeon T
Full Access

Purpose. The purpose of this study was to examine the influence of weight-bearing on the measurement of in vivo wear of total knee replacements using model-based RSA at 1 and 2 years following surgery. Methods. Model-based RSA radiographs were collected for 106 patients who underwent primary TKR at a single institution. Supine RSA radiographs were obtained post-operatively and at 6-, 12-, and 24-months. Standing (weight-bearing) RSA radiographs were obtained at 12-months (n=45) and 24-months (n=48). All patients received the same knee design with a fixed, conventional PE insert of either a cruciate retaining or posterior stabilized design. Ethics approval for this study was obtained. In order to assess in vivo wear, a highly accurate 3-dimensional virtual model of each in vivoTKA was developed. Coordinate data from RSA radiographs (mbRSA v3.41, RSACore) were applied to digital implant models to reconstruct each patient's replaced knee joint in a virtual environment (Geomagic Studio, 3D Systems). Wear was assessed volumetrically (digital model overlap) on medial and lateral condyles separately, across each follow-up. Annual rate of wear was calculated for each patient as the slope of the linear best fit between wear and time-point. The influence of weight-bearing was assessed as the difference in annual wear rate between standing and supine exams. Age, BMI, and Oxford-12 knee improvement were measured against wear rates to determine correlations. Results. Weight bearing wear measurement was most consistent and prevalent in the medial condyle with 0–4% of calculated wear rates being negative compared to 29–39% negative wear rates for the lateral condyle. For the medial condyle, standing exams revealed higher mean wear rates at 1 and 2 years; supine, 16.3 mm. 3. /yr (SD: 27.8) and 11.2 mm. 3. /yr (SD: 18.5) versus standing, 51.3 mm. 3. /yr (SD: 55.9) and 32.7 mm. 3. /yr (SD: 31.7). The addition of weight-bearing increased the measured volume of wear for 78% of patients at 1 year (Avg: 32.4 mm. 3. /yr) and 71% of patients at 2 years (Avg: 48.9 mm. 3. /yr). There were no significant (95% CI) correlations between patient demographics and wear rates. Discussion and Conclusion. This study demonstrated TKA wear to occur at a rate of approximately 10 mm. 3. /year and 39 mm. 3. /year in patients imaged supine versus standing, respectively, averaged over 2 years of clinical follow-up. In an effort to eliminate the effect of PE creep and deformation, wear was also calculated between 12 and 24 months as 9.3 mm. 3. (standing examinations), This value is comparable to wear rates obtained from retrieved TKRs. Weight-bearing exams produced better wear data with fewer negative wear rates and reduced variance. Limitations of this study include: supine patient imaging performed at post-op, no knee flexion performed, and unknown patient activity level. Strengths of this study include: large sample size of a single TKR system, linear regression of wear measurements and no requirement for implanted RSA beads with this method. Based on these results, in vivo volumetric wear of total knee replacement polyethylene can be reliably measured using model-based RSA and weight-bearing examinations in the short- to mid–term. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 8, Issue 11 | Pages 535 - 543
1 Nov 2019
Mohammad HR Campi S Kennedy JA Judge A Murray DW Mellon SJ

Objectives

The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process.

Methods

A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.


Bone & Joint 360
Vol. 8, Issue 5 | Pages 4 - 10
1 Oct 2019
Tsoi K Samuel A Jeys LM Ashford RU Gregory JJ


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 48 - 54
1 Jul 2019
Kahlenberg CA Lyman S Joseph AD Chiu Y Padgett DE

Aims

The outcomes of total knee arthroplasty (TKA) depend on many factors. The impact of implant design on patient-reported outcomes is unknown. Our goal was to evaluate the patient-reported outcomes and satisfaction after primary TKA in patients with osteoarthritis undergoing primary TKA using five different brands of posterior-stabilized implant.

Patients and Methods

Using our institutional registry, we identified 4135 patients who underwent TKA using one of the five most common brands of implant. These included Biomet Vanguard (Zimmer Biomet, Warsaw, Indiana) in 211 patients, DePuy/Johnson & Johnson Sigma (DePuy Synthes, Raynham, Massachusetts) in 222, Exactech Optetrak Logic (Exactech, Gainesville, Florida) in 1508, Smith & Nephew Genesis II (Smith & Nephew, London, United Kingdom) in 1415, and Zimmer NexGen (Zimmer Biomet) in 779 patients. Patients were evaluated preoperatively using the Knee Injury and Osteoarthritis Outcome Score (KOOS), Lower Extremity Activity Scale (LEAS), and 12-Item Short-Form Health Survey questionnaire (SF-12). Demographics including age, body mass index, Charlson Comorbidity Index, American Society of Anethesiologists status, sex, and smoking status were collected. Postoperatively, two-year KOOS, LEAS, SF-12, and satisfaction scores were compared between groups.


Bone & Joint 360
Vol. 8, Issue 3 | Pages 3 - 7
1 Jun 2019
Patel NG Waterson HB Phillips JRA Toms AD


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 71 - 71
1 May 2019
Chow J
Full Access

The goals of a total knee arthroplasty include approximation of the function of a normal knee and achievement of balance post-surgery. Accurate bone preparation and the preservation of natural ligaments along with a functional knee design, holds the potential to provide a method of restoring close to normal function. Although conventional knee arthroplasty is considered a successful intervention for end-stage osteoarthritis, some patients still experience reduced functionality and in some cases, require revision procedures. With conventional manual techniques, accurate alignment of the tibial component has been difficult to achieve. Even in the hands of skilled knee surgeons, outliers beyond 2 degrees of the desired alignment may occur in as many as 40%-60% of cases using conventional methods, and the range of component alignment varies considerably. Similarly, for total knee replacement outliers beyond 2 degrees of the desired alignment may occur in as many as 15% of cases in the coronal plane, going up to 40% of unsatisfactory alignment in the sagittal plane. Robotics-assisted arthroplasty has gained increasing popularity as orthopaedic surgeons aim to increase accuracy and precision of implant positioning. With advances in computer generated data, with image free data, surgeons have the ability to better predict and influence surgical outcomes. Based on planned implant position and soft tissue considerations, robotics-assisted systems can provide surgeons with virtual tools to make informed decisions for knee replacement, specific to the needs of the patient. Here, for the first time in a live surgical setting, we assess the accuracy and technique of a novel imageless semiautonomous handheld robotic surgical technique in bi-cruciate retaining total knee arthroplasty (Navio, Smith and Nephew). The system supports image-free anatomic data collection, intraoperative surgical planning and execution of the plan using a combination of robotic burring and saw cut guides


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 41 - 41
1 May 2019
Blaha J
Full Access

Ligament releases are necessary for contemporary non-conforming femoral-tibial articulations. Most total knee arthroplasty prostheses are designed to be non-conforming at the articulation between the femoral and tibial components. This design is chosen on the arthroplasty principle that “constraint causes loosening” and conforming surfaces have been considered constrained. To provide stability the ligaments are adjusted so that tension in the ligament can provide stability for the total knee replacement. Ligament releases are NOT necessary for contemporary conforming femoral-tibial articulations. Through the majority of the range of motion, the normal human knee is not stabilised by ligament tension. Rather, it is the geometrical conformity of the femur and tibia, especially on the medial side, that provides stability. The ligaments are present and ready to restrain the knee from excess varus-valgus or anterior-posterior loads. In a knee design that is congruent, ligaments may be left intact as in the normal knee, ready to provide restraint but not necessarily to provide stability except when excess loads are applied to the knee. When designing and using the ADVANCE Medial Pivot total knee, the author has left ligaments in the toe-region of the stress-strain curve rather than releasing and tensioning the ligaments. Patient satisfaction survey data at routine follow-up visits for patients at 7–15 years after arthroplasty with this type of reconstruction indicate high satisfaction despite medial and lateral opening (on valgus and varus stress) that would be considered “mid-flexion instability” for non-conforming joints that require careful ligament releases and tensioning


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 33 - 33
1 May 2019
Rodriguez J
Full Access

Knee replacement is a proven and reproducible procedure to alleviate pain, re-establish alignment and restore function. However, the quality and completeness to which these goals are achieved is variable. The idea of restoring function by reproducing condylar anatomy and asymmetry has been gaining favor. As knee replacements have evolved, surgeons have created a set of principles for reconstruction, such as using the femoral transepicondylar axis (TEA) in order to place the joint line of the symmetric femoral component parallel to the TEA, and this has been shown to improve kinematics. However, this bony landmark is really a single plane surrogate for independent 3-dimensional medial and lateral femoral condylar geometry, and a difference has been shown to exist between the natural flexion-extension arc and the TEA. The TEA works well as a surrogate, but the idea of potentially replicating normal motion by reproducing the actual condylar geometry and its involved, individual asymmetry has great appeal. Great variability in knee anatomy can be found among various populations, sizes, and genders. Each implant company creates their specific condylar geometry, or “so called” J curves, based on a set of averages measured in a given population. These condylar geometries have traditionally been symmetric, with the individualised spatial placement of the (symmetric) curves achieved through femoral component sizing, angulation, and rotation performed at the time of surgery. There is an inherent compromise in trying to achieve accurate, individual medial and lateral condylar geometry reproduction, while also replicating size and avoiding component overhang with a set implant geometry and limited implant sizes. Even with patient-specific instrumentation using standard over-the-counter implants, the surgeon must input his/her desired endpoints for bone resection, femoral rotation, and sizing as guidelines for compromise. When all is done, and soft tissue imbalance exists, soft tissue release is the final, common compromise. The custom, individually made knee design goals include reproducible mechanical alignment, patient-specific fit and positioning, restoration of articular condylar geometry, and thereby, more normal kinematics. A CT scan allows capture of three-dimensional anatomical bony details of the knee. The individual J curves are first noted and corrected for deformity, after which they are anatomically reproduced using a Computer-Aided Design (CAD) file of the bones in order to maximally cover the bony surfaces and concomitantly avoid implant overhang. No options for modifications are offered to the surgeon, as the goal is anatomic restoration. Given these ideals, to what extent are patients improved? The concept of reproducing bony anatomy is based on the pretext that form will dictate function, such that normal-leaning anatomy will tend towards normal-leaning kinematics. Therefore, we seek to evaluate knee function based on objective assessments of movement or kinematics. In summary, the use of custom knee technology to more closely reproduce an individual patient's anatomy holds great promise in improving the quality and reproducibility of postoperative function. Compromises of fit and rotation are minimised, and implant overhang is potentially eliminated as a source of pain. Early results have shown objective improvements in clinical outcomes. Admittedly, this technology is limited to those patients with mild to moderate deformity at this time, since options like constraint and stems are not available. Yet these are the patients who can most clearly benefit from a higher functional state after reconstruction. Time will reveal if this potential can become a reproducible reality


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 70 - 70
1 Apr 2019
Van Citters D Currier B Titus A Currier J
Full Access

Introduction. Wear of polyethylene tibial inserts has been cited as being responsible for up to 25% of revision surgeries, imposing a very significant cost burden on the health care system and increasing patient risk. Accurate measurement of material loss from retrieved knee bearings presents difficult challenges because gravimetric methods are not useful with retrievals and unworn reference dimensions are often unavailable. Geometry and the local anatomy restrict in vivo radiographic wear analysis, and no large-scale analyses have illuminated long-term comparative wear rates and their dependence on design and patient factors. Our study of a large retrieval archive of knee inserts indicates that abrasive/adhesive wear of polyethylene inserts, both on the articular surface and on the backside of modular knees is an important contributor to wear, generation of debris and integrity of locking geometry. The objective of the current study is to quantify wear performance of tibial inserts in a large archive of retrieved knees of different designs. By assessing wear in a large and diverse series, the goal is to discern the effect on wear performance of a number of different factors: patient factors that might help guide treatment, knee design factors and bearing material factors that may inform a surgeon's choice from among the array of arthroplasty device options. Methods. An IRB approved retrieval database was queried for TKA designs implanted between 1997 and 2017. 1385 devices from 5 TKA designs were evaluated. Damage was ranked according to Hood's method, oxidation was determined through FTIR, and wear was determined through direct measurement of retrieved inserts using a previously established protocol. Design features (e.g. materials, conformity, locking mechanisms, stabilization, etc.) and patient demographics (e.g. age, weight, BMI, etc.) were cataloged. Multivariate analysis was performed to isolate factors contributing to wear, oxidation, and damage. Results. Wear and oxidation were both found to scale with time in vivo in conventional and crosslinked polyethylene. Wear rate was also found to scale with time in vivo, but was not found to be a function of oxidation. Regression shows patient age and female sex to correlate negatively with wear rate. Polished trays, crosslinked polyethylene, and constrained knee designs are all correlated with decreased wear rates. Discussion. While this study indicates that loosening and infection are predominant causes for TKA revision, wear related failure remains common. We believe this to be the largest existing comparative study of modern TKA wear rates. Insert wear is shown to correlate with several patient factors. Wear performance also varies significantly between knee designs, polyethylene material choice and tray surface finish. When compared to a historical standard for knee wear rates, all designs evaluated in the current study exhibited significant improvements in wear rates. Retrieval analysis can provide insight into implant and patient related factors that contribute to knee wear, with the goal of improving patient outcomes and best matching design decisions to patient populations


Bone & Joint Research
Vol. 8, Issue 3 | Pages 136 - 145
1 Mar 2019
Cerquiglini A Henckel J Hothi H Allen P Lewis J Eskelinen A Skinner J Hirschmann MT Hart AJ

Objectives

The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic.

Methods

We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 53 - 53
1 Oct 2018
Walker PS Einhorn T Schwarzkopf R Hooper J Werner J Fernandez E
Full Access

Introduction. In major orthopaedic departments, typically several total knee systems are used. Each system requires several sets of instruments, each set with many trays of complicated and expensive parts. The logistics and costs of maintainance are considerable. Our overall goal is to investigate the feasibility of autoclavable single-use 3D printed instruments made from a polymeric material, used for any type of total knee design. The procedure will be standardized and adjustments easy to implement. Each set will be packaged individually, and used for a single case. There are many aspects to this study; in this part, the aims are to identify suitable materials for autoclavability and strength, and then to compare the accuracy of a novel design of 3D printed tibial cutting guide with a current metallic guide. Methods. Test samples were designed to simulate shapes in current instruments, such as mating pegs and holes, threaded screws, and slotted blocks. Each set was produced in biocompatible materials, ABS-M30i, VeroClear (MED610), Ultem1010, and Nylon 12. Each part was laser scanned, and then imaged virtually using a reverse engineering software (GeoMagic). Manual measurements of key dimensions were also made using calipers. The parts were autoclaved using a standardized protocol, 30 minutes at 250° F. All parts were re-scanned and measured to determine any changes in dimensions. To test for strength and abrasion resistance, the slotted blocks were pinned to sawbones model tibias, and an oscillating saw used to cut through the slot. A compact 3D printed tibial cutting guide was then designed which fitted to the proximal tibia and allowed varus-valgus, tibial slope and height adjustments. A small laser attached to the guide projected to a target at the ankle. Tests were made on 20 sawbones, and compared with 20 with a standard metal cutting guide. Digitization was used to measure the angles of the cuts. Results. Prior to autoclaving, the mating parts of all parts were congruent, except for Nylon 12 which had processing debris in slots and screw threads. The ABS-M30i shapes became grossly deformed after autoclaving. The other materials experienced only small changes in dimensions without loss of overall shape, but the slot of the Nylon 12 block was stenotic, 1.4 mm compared to 0.9 mm before autoclaving. In saw blade testing, the VeroClear block fractured through the corner of the slot, while the Nylon 12 block deformed due to heating. The Ultem1010 block produced a small amount of debris, but maintained its shape without any structural damage. In the tests of the tibial cutting guide the 3D printed laser-guided tibial cutting guide resulted in a mean absolute error of 1.72°±1.31° and 1.19°±0.93°, for the tibial slope and varus-valgus respectively. For the conventional guides, these values were 3.78°±1.98° and 2.33°±0.98°, respectively. These measurements were found to be statistically significant with p values of 0.004 and 0.001, respectively. Conclusions. Thus far, apart from patient specific cutting guides and trial components, 3D printing has had limited applications in total knee surgery. As cost containment remains prominent, the use of 3D printing to produce standardized instruments may become viable. These instruments would not require pre-op planning such as CT or MRI, yet allow patient-specific angular settings. Our results indicated that Ultem1010 is a promising material, while a novel tibial cutting guide showed higher accuracy than standard, as well as being quicker to use. These initial tests indicated the viability of 3D printed instruments, but further work will include design and evaluation of the other cutting guides, manufacturing logistics such as in-house or company- based, and economics