This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
AO Spine Reference Centre & Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. Traumatic spinal cord injury (SCI) is a devastating condition with no curative therapy. Pro-inflammatory therapy has been suggested recently to try and reduce the inhibitory
Introduction: Acute neurological damage from spinal cord injuries is believed to be localised, however it initiates a cascade of secondary events which usually leads to extensive and permanent neurological deficit. The secondary damage begins with the disruption of the blood-spinal cord barrier which unleashes a protracted inflammatory response. This prolonged inflammatory response is the catalyst for the secondary neurodegeneration and limited repair response that occurs in the chronic phase of a spinal cord injury. In this study it was proposed that the acute delivery of the angiogenic growth factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) would mediate inflammation and restore the blood spinal cord barrier. This would minimise the formation of
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.