The October 2024 Shoulder & Elbow Roundup360 looks at: Proximal humeral fractures with vascular compromise; Outcomes and challenges of revision arthroscopic rotator cuff repair: a systematic review; Evaluating treatment effectiveness for lateral elbow tendinopathy: a systematic review and network meta-analysis; Tendon transfer techniques for irreparable subscapularis tears: a comparative review; Impact of subscapularis repair in reverse shoulder arthroplasty; Isolated subscapularis tears strongly linked to shoulder pseudoparesis; Nexel and Coonrad-Morrey total elbow arthroplasties show comparable revision rates in New Zealand study; 3D MRI matches 3D CT in assessing bone loss and shoulder morphology in dislocation cases.
Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical
To systematically review the predominant complication rates and changes to patient-reported outcome measures (PROMs) following osteochondral allograft (OCA) transplantation for shoulder instability. This systematic review, following PRISMA guidelines and registered in PROSPERO, involved a comprehensive literature search using PubMed, Embase, Web of Science, and Scopus. Key search terms included “allograft”, “shoulder”, “humerus”, and “glenoid”. The review encompassed 37 studies with 456 patients, focusing on primary outcomes like failure rates and secondary outcomes such as PROMs and functional test results.Aims
Methods
This study aimed to assess the impact of using the metal-augmented glenoid baseplate (AGB) on improving clinical and radiological outcomes, as well as reducing complications, in patients with superior glenoid wear undergoing reverse shoulder arthroplasty (RSA). From January 2016 to June 2021, out of 235 patients who underwent primary RSA, 24 received a superior-AGB after off-axis reaming (Group A). Subsequently, we conducted propensity score matching in a 1:3 ratio, considering sex, age, follow-up duration, and glenoid wear (superior-inclination and retroversion), and selected 72 well-balanced matched patients who received a standard glenoid baseplate (STB) after eccentric reaming (Group B). Superior-inclination, retroversion, and lateral humeral offset (LHO) were measured to assess preoperative glenoid wear and postoperative correction, as well as to identify any complications. Clinical outcomes were measured at each outpatient visit before and after surgery.Aims
Methods
The aim of this study is to evaluate the change in incidence rate of shoulder arthroplasty, indications, and surgeon volume trends associated with these procedures between January 2003 and April 2021 in the province of Nova Scotia, Canada. A total of 1,545 patients between 2005 and 2021 were analyzed. Patients operated on between 2003 and 2004 were excluded due to a lack of electronic records. Overall, 84.1% of the surgeries (n = 1,299) were performed by two fellowship-trained upper limb surgeons, with the remainder performed by one of the 14 orthopaedic surgeons working in the province.Aims
Methods
Glenoid bone loss is a significant problem in the management of shoulder instability. The threshold at which the bone loss is considered “critical” requiring bony reconstruction has steadily dropped and is now approximately 15%. This necessitates accurate measurement in order that the correct operation is performed. CT scanning is the most commonly used modality and there are a number of techniques described to measure the bone loss however few have been validated. The aim of this study was to assess the accuracy of the most commonly used techniques for measuring glenoid bone loss on CT. Anatomically accurate models with known glenoid diameter and degree of bone loss were used to determine the mathematical and statistical accuracy of six of the most commonly described techniques (relative diameter, linear ipsilateral circle of best fit (COBF), linear contralateral COBF, Pico, Sugaya, and circle line methods). The models were prepared at 13.8%, 17.6%, and 22.9% bone loss. Sequential CT scans were taken and randomized. Blinded reviewers made repeated measurements using the different techniques with a threshold for theoretical bone grafting set at 15%.Aims
Methods
Glenoid and humeral head bone defects have long been recognized as major determinants in recurrent shoulder instability as well as main predictors of outcomes after surgical stabilization. However, a universally accepted method to quantify them is not available yet. The purpose of the present study is to describe a new CT method to quantify bipolar bone defects volume on a virtually generated 3D model and to evaluate its reproducibility. A cross-sectional observational study has been conducted. Forty CT scans of both shoulders were randomly selected from a series of exams previously acquired on patients affected by anterior shoulder instability. Inclusion criterion was unilateral anterior shoulder instability with at least one episode of dislocation. Exclusion criteria were: bilateral shoulder instability; posterior or multidirectional instability, previous fractures and/or surgery to both shoulders; congenital or acquired inflammatory, neurological, or degenerative diseases. For all patients, CT exams of both shoulders were acquired at the same time following a standardized imaging protocol. The CT data sets were analysed on a standard desktop PC using the software 3D Slicer. Computer-based reconstruction of the Hill-Sachs and
Recurrent dislocation is both a cause and consequence of glenoid bone loss, and the extent of the bony defect is an indicator guiding operative intervention. Literature suggests that loss greater than 25% requires glenoid reconstruction. Measuring bone loss is controversial; studies use different methods to determine this, with no clear evidence of reproducibility. A systematic review was performed to identify existing CT-based methods of quantifying glenoid bone loss and establish their reliability and reproducibility A Preferred Reporting Items for Systematic reviews and Meta-Analyses-compliant systematic review of conventional and grey literature was performed.Aims
Methods
The amount of glenoid bone loss is an important factor in deciding between soft-tissue and bony reconstruction when managing anterior shoulder instability. Accurate and reproducible measurement of glenoid bone loss is therefore vital in evaluation of shoulder instability and recommending specific treatment. The aim of this systematic review is to identify the range methods and measurement techniques employed in clinical studies treating glenoid bone loss. A systematic review of the PubMed, MEDLINE, and Embase databases was undertaken to cover a ten-year period from February 2011 to February 2021. We identified clinical studies that incorporated bone loss assessment in the methodology as part of the decision-making in the management of patients with anterior shoulder instability. The Preferred Reporting Items for Systematic Reviews (PRISMA) were used.Aims
Methods
Introduction and Objective. In recent years, along with the extending longevity of patients and the increase in their functional demands, the number of annually performed RSA and the incidence of complications are also increasing. When a complication occurs, the patient often needs multiple surgeries to restore the function of the upper limb. Revision implants are directly responsible for the critical reduction of the bone stock, especially in the shoulder. The purpose of this paper is to report the use of allograft bone to restore the bone stock of the glenoid in the treatment of an aseptic glenoid component loosening after a reverse shoulder arthroplasty (RSA). Materials and Methods. An 86-years-old man came to our attention for aseptic glenoid component loosening after RSA. Plain radiographs showed a complete dislocation of the glenoid component with 2 broken screws in the neck of glenoid. CT scans confirmed the severe reduction of the glenoid bone stock and critical bone resorption and were used for the preoperative planning. To our opinion, given the critical bone defect, the only viable option was revision surgery with restoration of bone stock. We planned to use a bone graft harvested from distal bone bank femur as component augmentation. During the revision procedure the baseplate with a long central peg was implanted “on table” on the allograft and an appropriate osteotomy was made to customize the allograft on the
The purpose of this study was to compare clinical results, long-term survival, and complication rates of stemless shoulder prosthesis with stemmed anatomical shoulder prostheses for treatment of osteoarthritis and to analyze radiological bone changes around the implants during follow-up. A total of 161 patients treated with either a stemmed or a stemless shoulder arthroplasty for primary osteoarthritis of the shoulder were evaluated with a mean follow-up of 118 months (102 to 158). The Constant score (CS), the Disabilities of the Arm, Shoulder and Hand (DASH) score, and active range of motion (ROM) were recorded. Radiological analysis for bone adaptations was performed by plain radiographs. A Kaplan-Meier survivorship analysis was calculated and complications were noted.Aims
Methods
The aim of this study was to identify risk factors for recurrent instability of the shoulder and assess the ability to return to sport in patients with engaging Hill-Sachs lesions treated with arthroscopic Bankart repair and Hill-Sachs remplissage (ABR-HSR). This retrospective study included 133 consecutive patients with a mean age of 30 years (14 to 69) who underwent ABR-HSR; 103 (77%) practiced sports before the instability of the shoulder. All had large/deep, engaging Hill-Sachs lesions (Calandra III). Patients were divided into two groups: A (n = 102) with minimal or no (< 10%) glenoid bone loss, and B (n = 31) with subcritical (10% to 20%) glenoid loss. A total of 19 patients (14%) had undergone a previous stabilization, which failed. The primary endpoint was recurrent instability, with a secondary outcome of the ability to return to sport.Aims
Methods
During shoulder arthroplasty the native functionality of the diseased shoulder joint is restored, this functionality is strongly dependent upon the native anatomy of the pre-diseased shoulder joint. Therefore, surgeons often use the healthy contralateral scapula to plan the surgery, however in bilateral diseases such as osteoarthritis this is not always feasible. Virtual reconstructions are then used to reconstruct the pre-diseased anatomy and plan surgery or subject-specific implants. In this project, we develop and validate a statistical shape modeling method to reconstruct the pre-diseased anatomy of eroded scapulae with the aim to investigate the existence of predisposing anatomy for certain shoulder conditions. The training dataset for the statistical shape model consisted of 110 CT images from patients without observable scapulae pathologies as judged by an experienced shoulder surgeon. 3D scapulae models were constructed from the segmented images. An open-source non-rigid B-spline-based registration algorithm was used to obtain point-to-point correspondences between the models. The statistical shape model was then constructed from the dataset using principle component analysis. The cross-validation was performed similarly to the procedure described by Plessers et al. Virtual defects were created on each of the training set models, which closely resemble the morphology of
Superiorly eroded glenoids in cuff tear arthropathy represent a surgical challenge for reconstruction. The bone loss orientation and severity may influence glenoid component fixation. This computed-tomography study quantifies both the degree of erosion and orientation in superiorly eroded Favard E2 glenoids. We hypothesized that the erosion in E2 glenoids does not occur purely superiorly, rather, it is oriented in a predictable posterosuperior orientation with a largely semicircular line of erosion. Three-dimensional reconstructions of 40 shoulders with E2 glenoids (28 female, 12 male patients) at a mean age of 74 years (range, 56–88 years) were created from computed-tomography images. Point coordinates were extracted from each construct to analyze the morphologic structure. The anatomical location of the supra- and infraglenoid tubercle guided the creation of a superoinferior axis, against which the orientation angle of the erosion was measured. The direction and, thus, orientation of erosion was calculated as a vector. By placing ten point coordinates along the line of erosion and creating a circle of best fit, the radius of the circle was placed orthogonally against a chord that resulted by connecting the two outermost points along the line of erosion. To quantify the extent of curvature of the line of erosion between the paleo- and neoglenoid, the length of the radius of the circle of best fit was calculated. Individual values were compared against the mean of circle radii. The area of bony erosion (neoglenoid), was calculated as a percentage of the total glenoid area (neoglenoid + paleoglenoid). The severity of the erosion was categorized as mild (0% to 33%), moderate (34% to 66%), and severe erosion (>66%). The mean orientation angle between the vector of bony erosion and the superoinferior axis of the glenoid was 47° ± 17° (range, 14° – 74°) located in the posterosuperior quadrant of the glenoid, resulting in the average erosion being directed between the 10 and 11 o'clock position (right shoulder). In 63% of E2 cases, the line of erosion separating the paleo- and neoglenoids was more curved than the average of all bony erosions in the cohort. The mean surface area of the neoglenoid was 636 ± 247 mm2(range, 233 – 1,333 mm2) and of the paleoglenoid 311 ± 165 mm2(range, 123 – 820 mm2), revealing that, on average, the neoglenoids consume 67% of the total glenoid surface. The extent of erosion of the total cohort was subdivided into one mild (2%), 14 moderate (35%) and 25 severe (62%) cases. Using a clock-face for orientation, the average orientation of type E2
Introduction. Little guidance exists regarding the minimum screw length and number necessary to achieve fixation with reverse shoulder arthroplasty (rTSA). The goal of this study is to quantify the pre- and post-cyclic baseplate displacements associated with two baseplate designs of different sizes using multiple screw lengths and numbers in a low density polyurethane bone substitute model. Methods. The test was conducted according to ASTM F 2028–17. The baseplate displacements of standard and small reverse shoulder constructs (Equinoxe, Exactech, Inc.) were quantified in a 15pcf polyurethane block (Pacific Research, Inc.) before and after cyclic testing with an applied load of 750N for 10,000 cycles. Baseplates were constructed using 2 or 4 screws with 3 different poly-axial locking compression screw lengths: 4.5×18mm, 4.5×30mm, and 4.5×46mm. Five of each configuration were tested for a total of 30 specimens for each baseplate. A two-tailed, unpaired student's t-test (p<0.05) compared baseplate displacements before and after cyclic loading in both the superior-inferior (S/I) and anterior-posterior (A/P) directions. The standard and small results were then compared. Results. All standard and small reverse glenoid baseplates remained well-fixed after cyclic loading in the low-density bone substitute model regardless of screw length or number. The average pre- and post-cyclic displacement for baseplates with 2 screws was significantly greater than that of baseplates with 4 screws in both the A/P and S/I directions. The average pre- and post-cyclic displacements for baseplates with 18mm screws were significantly greater than baseplates with 46mm screws in the A/P and S/I directions, post-cyclic displacement with 18mm screws was significantly greater than with 30mm screws in the A/P and S/I directions, and post-cyclic displacement with 30mm screws was significantly greater than with 46mm screws in the S/I direction only. Few differences in fixation were observed between baseplate sizes. Statistically significant difference was reached for post cyclic S/I displacement for 30mm (small baseplate superior) and 46mm screws (standard baseplate superior). Discussion and Conclusions. The results demonstrate that rTSA glenoid displacement is impacted by both the number and length of screws for both standard and small baseplate sizes. Regardless of the number of screws, the use of longer screws was associated with significantly better initial fixation. Additionally, the use of more screws was associated with significantly better fixation irrespective of screw length in the A/P direction. None of the tested devices catastrophically failed, demonstrating that adequate fixation can be achieved with as little as two 18mm screws for the baseplates utilized. However, this screw configuration was associated with the largest pre- and post-cyclic displacements, so it is assumed to be at a greater risk for aseptic loosening. If using 4 screws is not feasible in a given case, the results suggest that using longer screws can be used to improve fixation. The results of the small and standard baseplates were comparable for the given lengths and quantities of screws, suggesting that the reduced surface area of the small baseplate has no detrimental impact on fixation. Care should be made when extrapolating these results to
Patients with recurrent anterior dislocation of the shoulder commonly have an anterior osseous defect of the glenoid. Once the defect reaches a critical size, stability may be restored by bone grafting. The critical size of this defect under non-physiological loading conditions has previously been identified as 20% of the length of the glenoid. As the stability of the shoulder is load-dependent, with higher joint forces leading to a loss of stability, the aim of this study was to determine the critical size of an osseous defect that leads to further anterior instability of the shoulder under physiological loading despite a Bankart repair. Two finite element (FE) models were used to determine the risk of dislocation of the shoulder during 30 activities of daily living (ADLs) for the intact glenoid and after creating anterior osseous defects of increasing magnitudes. A Bankart repair was simulated for each size of defect, and the shoulder was tested under loading conditions that replicate Aims
Patients and Methods
Aims. We present our experience of using a metal-backed prosthesis and autologous bone graft to treat gross glenoid bone deficiency. Patients and Methods. A prospective cohort study of the first 45 shoulder arthroplasties using the SMR Axioma Trabecular Titanium (TT) metal-backed glenoid with autologous bone graft. Between May 2013 and December 2014, 45 shoulder arthroplasties were carried out in 44 patients with a mean age of 64 years (35 to 89). The indications were 23 complex primary arthroplasties, 12 to revise a hemiarthroplasty or resurfacing, five for aseptic loosening of the glenoid, and five for infection. Results. Of the 45 patients, 16 had anatomical shoulder arthroplasties (ASA) and 29 had reverse shoulder arthroplasties (RSA). Postoperatively, 43/45 patients had a CT scan. In 41 of 43 patients (95%), the glenoid peg achieved > 50% integration. In 40 of 43 cases (93%), the graft was fully or partially integrated. There were seven revisions (16%) but only four (9%) required a change of baseplate. Four (25%) of the 16 ASAs were revised for instability or cuff failure. At two-year radiological follow-up, five of the 41 cases (11%) showed some evidence of lucent lines. Conclusion. The use of a metal baseplate with a trabecular titanium surface in conjunction with autologous bone graft is a reliable method of addressing