Advertisement for orthosearch.org.uk
Results 1 - 20 of 45
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 783 - 791
1 Aug 2024
Tanaka S Fujii M Kawano S Ueno M Nagamine S Mawatari M

Aims

The aim of this study was to determine the clinical outcomes and factors contributing to failure of transposition osteotomy of the acetabulum (TOA), a type of spherical periacetabular osteotomy, for advanced osteoarthritis secondary to hip dysplasia.

Methods

We reviewed patients with Tönnis grade 2 osteoarthritis secondary to hip dysplasia who underwent TOA between November 1998 and December 2019. Patient demographic details, osteotomy-related complications, and the modified Harris Hip Score (mHHS) were obtained via medical notes review. Radiological indicators of hip dysplasia were assessed using preoperative and postoperative radiographs. The cumulative probability of TOA failure (progression to Tönnis grade 3 or conversion to total hip arthroplasty) was estimated using the Kaplan-Meier product-limited method. A multivariate Cox proportional hazards model was used to identify predictors of failure.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims

Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach.

Methods

From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 2 - 2
2 Jan 2024
Ditmer S Dwenger N Jensen L Ghaffari A Rahbek O
Full Access

The most important outcome predictor of Legg-Calvé-Perthes disease (LCPD) is the shape of the healed femoral head. However, the deformity of the femoral head is currently evaluated by non-reproducible, categorical, and qualitative classifications. In this regard, recent advances in computer vision might provide the opportunity to automatically detect and delineate the outlines of bone in radiographic images for calculating a continuous measure of femoral head deformity. This study aimed to construct a pipeline for accurately detecting and delineating the proximal femur in radiographs of LCPD patients employing existing algorithms. To detect the proximal femur, the pretrained stateof-the-art object detection model, YOLOv5, was trained on 1580 manually annotated radiographs, validated on 338 radiographs, and tested on 338 radiographs. Additionally, 200 radiographs of shoulders and chests were added to the dataset to make the model more robust to false positives and increase generalizability. The convolutional neural network architecture, U-Net, was then employed to segment the detected proximal femur. The network was trained on 80 manually annotated radiographs using real-time data augmentation to increase the number of training images and enhance the generalizability of the segmentation model. The network was validated on 60 radiographs and tested on 60 radiographs. The object detection model achieved a mean Average Precision (mAP) of 0.998 using an Intersection over Union (IoU) threshold of 0.5, and a mAP of 0.712 over IoU thresholds of 0.5 to 0.95 on the test set. The segmentation model achieved an accuracy score of 0.912, a Dice Coefficient of 0.937, and a binary IoU score of 0.854 on the test set. The proposed fully automatic proximal femur detection and segmentation system provides a promising method for accurately detecting and delineating the proximal femoral bone contour in radiographic images, which is necessary for further image analysis


Bone & Joint 360
Vol. 12, Issue 4 | Pages 38 - 41
1 Aug 2023

The August 2023 Children’s orthopaedics Roundup. 360. looks at: DDH: What can patients expect after open reduction?; Femoral head deformity associated with hip displacement in non-ambulatory cerebral palsy; Bony hip reconstruction for displaced hips in patients with cerebral palsy: is postoperative immobilization indicated?; Opioid re-prescriptions after ACL reconstruction in adolescents are associated with subsequent opioid use disorder; Normative femoral and tibial lengths in a modern population of USA children; Retrospective analysis of associated anomalies in 636 patients with operatively treated congenital scoliosis; Radiological hip shape and patient-reported outcome measures in healed Perthes’ disease; Significantly displaced adolescent posterior sternoclavicular joint injuries


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 40 - 40
23 Jun 2023
Millis MB Vakulenko-Lagun B Almakaris R Kim HJ
Full Access

LCPD can cause femoral head deformity and osteoarthritis requiring total hip replacement (THR). Currently, there is little data on how patients are functioning after a THR from patients’ perspective. The purpose of this study was to collect a large patient-reported outcome data set on adults with LCPD, including those who had a THR, using a Web-survey method and to compare their outcomes to a normative population. An English REDCap-based survey was built and made available on a LCPD study group website. The survey included childhood and adult LCPD history, SF-36 Health Survey, and the Hip Disability and Osteoarthritis Outcome Score (HOOS). Statistical analysis included t-test and linear and proportional odds regressions. Of the 1182 participants who completed the survey, 261 participants (89 M, 172 F) had a THR. The mean age at survey was 44.6±12.4 years (range 20–79). The mean duration since THR was 7.2±8 years (median 4, range 0–43). Gender and age matched analysis showed that THR participants had significantly lower HOOS Quality-of-Life and Sports scores (p<0.0001) for all age groups in comparison to a normative cohort. In women, the HOOS Symptoms, Daily Living, and Pain scores were also significantly lower in the <55 age groups (p<0.05). Similarly, SF-36 scores were significantly lower (p<0.05) in female <45 age groups in 5 out of 8 SF-36 scales. Overall, hip dysplasia and the number of years-from-THR were the main factors associated with worse SF-36 and HOOS scores. In comparison to the non-THR participants, THR participants had higher scores in some of the HOOS and SF-36 scales. LCPD participants with THR had significantly worse HOOS and SF-36 scores in most of the scales studied than a normative cohort, especially in women. There is significant disability even after a THR, warranting continued efforts to improve treatment and outcome


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1304 - 1312
1 Dec 2022
Kim HKW Almakias R Millis MB Vakulenko-Lagun B

Aims. Perthes’ disease (PD) is a childhood hip disorder that can affect the quality of life in adulthood due to femoral head deformity and osteoarthritis. There is very little data on how PD patients function as adults, especially from the patients’ perspective. The purpose of this study was to collect treatment history, demographic details, the University of California, Los Angeles activity score (UCLA), the 36-Item Short Form survey (SF-36) score, and the Hip disability and Osteoarthritis Outcome score (HOOS) of adults who had PD using a web-based survey method and to compare their outcomes to the outcomes from an age- and sex-matched normative population. Methods. The English REDCap-based survey was made available on a PD study group website. The survey included childhood and adult PD history, UCLA, SF-36, and HOOS. Of the 1,182 participants who completed the survey, the 921 participants who did not have a total hip arthroplasty are the focus of this study. The mean age at survey was 38 years (SD 12) and the mean duration from age at PD onset to survey participation was 30.8 years (SD 12.6). Results. In comparison to a normative population, the PD participants had significantly lower HOOS scores across all five scales (p < 0.001) for all age groups. Similarly, SF-36 scores of the participants were significantly lower (p < 0.001) for all scales except for age groups > 55 years. Overall, females, obese participants, those who reported no treatment in childhood, and those with age of onset > 11 years had significantly worse SF-36 and HOOS scores. Pairwise correlations showed a strong positive correlation within HOOS scales and between HOOS scales and SF-36 scales, indicating construct validity. Conclusion. Adult PD participants had significantly worse pain, physical, mental, and social health than an age- and sex-matched normative cohort. The study reveals a significant burden of disease on the adult participants of the survey, especially females. Cite this article: Bone Joint J 2022;104-B(12):1304–1312


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 20 - 20
1 Dec 2022
Ng G El Daou H Bankes M Cobb J Beaulé P
Full Access

Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion. Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM). Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions. The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral hip capsule which resulted in a limited external rotation and a stiffer and tighter hip. Capsular tightness may still be secondary to acetabular retroversion, thus capsular management may be warranted for larger corrections or rotational osteotomies. In efforts to optimize surgical management and clinical outcomes, anteverting PAO is a viable option to address FAI due to acetabular retroversion or overcoverage


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1736 - 1741
1 Nov 2021
Tolk JJ Eastwood DM Hashemi-Nejad A

Aims. Perthes’ disease (PD) often results in femoral head deformity and leg length discrepancy (LLD). Our objective was to analyze femoral morphology in PD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalization on proximal and subtrochanteric femoral lengths. Methods. All patients treated for PD in our institution between January 2013 and June 2020 were reviewed retrospectively. Patients with unilateral PD, LLD of ≥ 5 mm, and long-leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD), and subtrochanteric femoral length were compared between PD side and the unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis. Results. Overall, 79 patients were included, of whom 21 underwent contralateral epiphysiodesis for leg length correction. In the complete cohort, the mean LLD was 1.8 cm (95% confidence interval (CI) 1.5 to 2.0), mean ATD difference was 1.8 cm (95% CI -2.1 to -1.9), and mean subtrochanteric difference was -0.2 cm (95% CI -0.4 to 0.1). In the epiphysiodesis group, the mean LLD before epiphysiodesis was 2.7 cm (95% CI 1.3 to 3.4) and 1.3 cm (95% CI -0.5 to 3.8) at skeletal maturity. In the nonepiphysiodesis group the mean LLD was 2.0 cm (95% CI 0.5 to 5.1; p = 0.016). The subtrochanteric region on the PD side was significantly longer at skeletal maturity in the epiphysiodesis group compared to the nonepiphysiodesis group (-1.0 cm (95% CI -2.4 to 0.6) vs 0.1 cm (95% CI -1.0 to 2.1); p < 0.001). Conclusion. This study demonstrates that LLD after PD originates from the proximal segment only. In patients who had contralateral epiphysiodesis to balance leg length, this is achieved by creating a difference in subtrochanteric length. Arthroplasty surgeons need to be aware that shortening of the proximal femur segment in PD patients may be misleading, as the ipsilateral subtrochanteric length in these patients can be longer. Therefore, we strongly advise long-leg standing films for THA planning in PD patients in order to avoid inadvertently lengthening the limb. Cite this article: Bone Joint J 2021;103-B(11):1736–1741


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1656 - 1661
1 Nov 2021
Iwasa M Ando W Uemura K Hamada H Takao M Sugano N

Aims

Pelvic incidence (PI) is considered an important anatomical parameter for determining the sagittal balance of the spine. The contribution of an abnormal PI to hip osteoarthritis (OA) remains controversial. In this study, we aimed to investigate the relationship between PI and hip OA, and the difference in PI between hip OA without anatomical abnormalities (primary OA) and hip OA with developmental dysplasia of the hip (DDH-OA).

Methods

In this study, 100 patients each of primary OA, DDH-OA, and control subjects with no history of hip disease were included. CT images were used to measure PI, sagittal femoral head coverage, α angle, and acetabular anteversion. PI was also subdivided into three categories: high PI (larger than 64.0°), medium PI (42.0° to 64.0°), and low PI (less than 42.0°). The anterior centre edge angles, posterior centre edge angles, and total sagittal femoral head coverage were measured. The correlations between PI and sagittal femoral head coverage, α angle, and acetabular anteversion were examined.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_6 | Pages 8 - 8
1 May 2021
Tolk J Eastwood D Hashemi-Nejad A
Full Access

Introduction. Legg-Calvé-Perthes disease (LCPD) often results in femoral head deformity and leg length discrepancy (LLD). Objective of this study was to analyse femoral morphology in LCPD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalisation on proximal and subtrochanteric femoral lengths. Materials and Methods. All patients treated for LCPD in our institution between January 2013 and June 2020 were retrospectively reviewed. Patients with unilateral LCPD, LLD of ≥5mm and long leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD) and subtrochanteric femoral length were compared between LCPD side and unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis. Results. 79 patients were included, 21/79 underwent contralateral epiphysiodesis for leg length correction. In the complete cohort the average LLD was 1.8cm (95% CI 1.5 – 2.0), average ATD difference was 1.8cm (95% CI −2.1 – −1.9) and average subtrochanteric difference was −0.2cm (95% CI −0.4 – 0.1). In the epiphysiodesis group the average LLD before epiphysiodesis was 2.7 (1.3 – 3.4) cm and 1.3 (−0.5 – 3.8) cm at skeletal maturity. In the non-epiphysiodesis group the average LLD was 2.0 (0.5 – 5.1), p=0.016. The subtrochanteric region on the LCPD side was significantly longer at skeletal maturity in the epiphysiodesis group compared to the non-epiphysiodesis group: −1.0 (−2.4 – 0.6) versus 0.1 (−1.0 – 2.1), p<0.001. Conclusions. This study concludes that LLD after LCPD originates from the proximal segment only. In patients who had had a contralateral epiphysiodesis, the subtrochanteric femoral region was significantly longer on the LCPD side. These anatomical changes need to be considered by paediatric surgeons when advising leg length equalisation procedures, and by arthroplasty surgeons when LCPD patients present for hip arthroplasty


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 198 - 203
1 Jan 2021
Min JJ Kwon S Sung KH Lee KM Chung CY Park MS

Aims

Hip displacement, common in patients with cerebral palsy (CP), causes pain and hinders adequate care. Hip reconstructive surgery (HRS) is performed to treat hip displacement; however, only a few studies have quantitatively assessed femoral head sphericity after HRS. The aim of this study was to quantitatively assess improvement in hip sphericity after HRS in patients with CP.

Methods

We retrospectively analyzed hip radiographs of patients who had undergone HRS because of CP-associated hip displacement. The pre- and postoperative migration percentage (MP), femoral neck-shaft angle (NSA), and sphericity, as determined by the Mose hip ratio (MHR), age at surgery, Gross Motor Function Classification System level, surgical history including Dega pelvic osteotomy, and triradiate cartilage status were studied. Regression analyses using linear mixed model were performed to identify factors affecting hip sphericity improvement.


Bone & Joint Open
Vol. 1, Issue 7 | Pages 364 - 369
10 Jul 2020
Aarvold A Lohre R Chhina H Mulpuri K Cooper A

Aims

Though the pathogenesis of Legg-Calve-Perthes disease (LCPD) is unknown, repetitive microtrauma resulting in deformity has been postulated. The purpose of this study is to trial a novel upright MRI scanner, to determine whether any deformation occurs in femoral heads affected by LCPD with weightbearing.

Methods

Children affected by LCPD were recruited for analysis. Children received both standing weightbearing and supine scans in the MROpen upright MRI scanner, for coronal T1 GFE sequences, both hips in field of view. Parameters of femoral head height, width, and lateral extrusion of affected and unaffected hips were assessed by two independent raters, repeated at a one month interval. Inter- and intraclass correlation coefficients were determined. Standing and supine measurements were compared for each femoral head.


Bone & Joint Open
Vol. 1, Issue 5 | Pages 152 - 159
22 May 2020
Oommen AT Chandy VJ Jeyaraj C Kandagaddala M Hariharan TD Arun Shankar A Poonnoose PM Korula RJ

Aims

Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips.

Methods

In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months).


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1578 - 1584
1 Dec 2019
Batailler C Weidner J Wyatt M Pfluger D Beck M

Aims

A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement.

Patients and Methods

The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index.


Bone & Joint 360
Vol. 8, Issue 2 | Pages 38 - 41
1 Apr 2019


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1551 - 1558
1 Dec 2018
Clohisy JC Pascual-Garrido C Duncan S Pashos G Schoenecker PL

Aims. The aims of this study were to review the surgical technique for a combined femoral head reduction osteotomy (FHRO) and periacetabular osteotomy (PAO), and to report the short-term clinical and radiological results of a combined FHRO/PAO for the treatment of selected severe femoral head deformities. Patients and Methods. Between 2011 and 2016, six female patients were treated with a combined FHRO and PAO. The mean patient age was 13.6 years (12.6 to 15.7). Clinical data, including patient demographics and patient-reported outcome scores, were collected prospectively. Radiologicalally, hip morphology was assessed evaluating the Tönnis angle, the lateral centre to edge angle, the medial offset distance, the extrusion index, and the alpha angle. Results. The mean follow-up was 3.3 years (2 to 4.6). The modified Harris Hip Score improved by 33.0 points from 53.5 preoperatively to 83.4 postoperatively (p = 0.03). The Western Ontario McMasters University Osteoarthritic Index score improved by 30 points from 62 preoperatively to 90 postoperatively (p = 0.029). All radiological parameters showed significant improvement. There were no long-term disabilities and none of the hips required early conversion to total hip arthroplasty. Conclusion. FHRO combined with a PAO resulted in clinical and radiological improvement at short-term follow-up, suggesting it may serve as an appropriate salvage treatment option for selected young patients with severe symptomatic hip deformities


The hip-shelf procedure is less often indicated since the introduction of peri-acetabular osteotomy (PAO). Although this procedure does not modify pelvic shape, its influence on subsequent total hip arthroplasty (THA) is not known. We performed a case-control study comparing THA after hip-shelf surgery and THA in dysplastic hips to determine: 1) its influence on THA survival, 2) technical issues and complications related to the former procedure. We performed a retrospective case-control study comparing 61 THA cases done after hip-shelf versus 63 THA in case-matched dysplastic hips (control group). The control group was matched according to sex, age, BMI, ASA and Charnley score, and bearing type. We compared survival and function (Harris, Oxford-12), complications at surgery, rate of bone graft at cup insertion, and post-operative complications. The 13-year survival rates for any reason did not differ: 89% ± 3.2% in THA after hip shelf versus 83% ± 4.5% in the controls (p = 0.56). Functional scores were better in the control group (Harris 90 ± 10, Oxford 41/48) than in the hip-shelf group (Harris 84.7 ± 14.7, Oxford 39/48) (p = 0.01 and p = 0.04). Operative time, bleeding and rate of acetabular bone grafting (1.6 hip-shelf versus 9.5 control) were not different (p > 0.05). Postoperative complication rates did not differ: one transient fibular nerve palsy and two dislocations (3.2%) in the hip-shelf group versus four dislocations in the control group (6.3%). The hip-shelf procedure does not compromise the results of a subsequent THA in dysplastic hips. This procedure is simple and may keep its indications versus PAO in severely subluxed hips or in case of severe femoral head deformity


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 81 - 81
1 Jan 2018
Fürnstahl P Lanfranco S Leunig M Ganz R
Full Access

Severe femoral head deformities due to Perthes' disease are characterized by limitation of ROM, pain, and early degeneration, eventually becoming intolerable already in early adulthood. Morphological adaptation of the acetabulum is substantial and complex intra- and extraarticular impingement sometimes combined with instability are the underlying pathologies. Improvement is difficult to achieve with classic femoral and acetabular osteotomies. Since 15 years we have executed a head size reduction. With an experience of more than 50 cases no AVN of the femoral head was recorded. In two hips fracture of the medial column of the neck has been successfully treated with subsequent screw fixation. The clinical mid-term results are characterized by substantial increase of hip motion and pain reduction. Surgical goal is to obtain a smaller head, well contained in the acetabulum. It should become as spherical as possible and the gliding surface should be covered with best available cartilage. Together, it has to be accomplished under careful consideration of the blood supply to the femoral head. In the majority of cases acetabular reorientation is necessary to optimize joint stability. Femoral head segment resections without guidance is difficult. Therefore, 3D-simulation for cut direction and segment size including the implementation of the resultant osteotomy configuration was developed using individually manufactured cutting jigs. First experience in five such cases have revealed good results. The forthcoming steps are the improvement of computer algorithm and automation. Goal is that with first cut decision the other cuts are automatically determined resulting in optimal head size and sphericity


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 82 - 82
1 Jan 2018
Masri B Zhang H Gilbart M Wilson D
Full Access

Cam-type femoroacetabular impingement (cam-FAI) can be treated with femoral neck osteochondroplasty to increase the clearance between the femoral head/neck and the acetabular rim. Because femur-acetabulum contact is very difficult to assess directly in patients, it is not clear if this surgery achieves its objective of reducing femur-acetabulum contact, and it is not clear how much of the femoral head/neck region should be resected to allow clearance in all activities. Our research question was: “Does femoral neck osteochondroplasty increase femur-acetabulum clearance in an extreme hip posture in patients with cam FAI?”. We recruited 8 consecutive patients scheduled to undergo arthroscopic femoral neck osteochondroplasty to treat cam-type FAI. We assessed clearance between the acetabulum and the femoral neck before surgery and at 6 months post-op using an upright open MRI scanner that allowed the hip to be scanned in flexed postures. We scanned each subject in a supine hip flexion (90 degree), adduction and internal rotation (FADIR) posture. We measured the beta angle, which describes clearance between the acetabular rim and the femoral head/neck deformity. Osteochondroplasty increased clearance from a mean beta angle of −9.4 degrees (SD 19.3) to 4.4 degrees (SD 16.2°) (p<0.05). This finding suggests that femoral neck osteochondroplasty increases femur-acetabulum clearance substantially for a posture widely accepted to provoke symptoms in patients with cam-FAI


Bone & Joint 360
Vol. 6, Issue 1 | Pages 3 - 6
1 Feb 2017
Horn A Eastwood D