Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Objectives. Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo. Methods. ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry. Results. Calcium release doubled in the EB-treated group before returning to a level seen in untreated samples at 28 weeks. Extensive bone growth was observed around the perimeter of all implant types, along with limited osteoclastic activity. No statistically significant differences between comparative groups was identified. Conclusion. The higher than normal dose of EB used for surface modification did not adversely affect tissue response around implants in vivo. Surprisingly, incorporation of β-TCP and the subsequent accelerated release of Ca had no significant effect on in vivo implant performance, calling into question the clinical evidence base for these commercially available devices. Cite this article: I. Palmer, S. A. Clarke, F. J Buchanan. Enhanced release of calcium phosphate additives from bioresorbable orthopaedic devices using irradiation technology is non-beneficial in a rabbit model: An animal study. Bone Joint Res 2019;8:266–274. DOI: 10.1302/2046-3758.86.BJR-2018-0224.R2


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1330 - 1335
1 Oct 2018
Ponzio DY Weitzler L deMeireles A Esposito CI Wright TM Padgett DE

Aims

The aim of this study was to evaluate the surface damage, the density of crosslinking, and oxidation in retrieved antioxidant-stabilized highly crosslinked polyethylene (A-XLPE) tibial inserts from total knee arthroplasty (TKA), and to compare the results with a matched cohort of standard remelted highly crosslinked polyethylene (XLPE) inserts.

Materials and Methods

A total of 19 A-XLPE tibial inserts were retrieved during revision TKA and matched to 18 retrieved XLPE inserts according to the demographics of the patients, with a mean length of implantation of 15 months (1 to 42). The percentage areas of PE damage on the articular surfaces and the modes of damage were measured. The density of crosslinking of the PE and oxidation were measured at loaded and unloaded regions on these surfaces.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 84 - 84
1 May 2016
Niikura M Nogi S Han Y Turner A Yutani T Uetsuki K Tomita N
Full Access

INTRODUCTION. Ultra-High Molecular Weight Polyethylene (UHMWPE) wear debris is thought to be a main factor in the development of osteolysis (1). However, the method for the evaluation of the biological response to UHMWPE particles has not yet been standardized. In this study, four different types of UHMWPE particles were generated using a mechanized pulverizing method and the biological responses of macrophages to the particles were investigated using an inverted cell culturing process (2). MATERIALS & METHODS. Virgin samples were manufactured via Direct Compression Molding (DCM) technique from UHMWPE GUR1050 resin powder (Ticona, USA). For vitamin E (VE)-blended sample, the resin was mixed with VE at 0.3 wt% and the mixture was then molded using DCM. The crosslinked virgin samples were made by gamma ray irradiation to UHMWPE GUR1020 resin sheet (Meditech, USA) with doses of 95kGy ±10% and annealed. The VE-blended crosslinked samples were made by electron beam irradiation to VE-blended samples with doses of 300kGy and annealed. The material conditions were summarized in Figure 1. To pulverize the samples, the Multi-Beads Shocker (Yasui Kikai, Japan) was used. After pulverization, samples were dispersed in an ethanol solution and sequentially filtered through polycarbonate filters. Over 100 sections of the filter were selected randomly and images of the particles were analyzed using scanning electron microscope (SEM). To analyze the macrophage biological response, an inverted cell culturing process was used (2). The mouse macrophage-like cells were seeded at densities of 4×105cells per well in a 96-well culture plate and incubated for 1h. UHMWPE particles suspended in the culture medium were then added to each well in the appropriate amount. After that, fresh medium was added to fill the wells, and a sealing film was used to cover the culture plate. The culture plate was then inverted to cause the UHMWPE particles interact with the adhered macrophages. The inverted culture plate was incubated for 8h. The amount of TNF-α was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS & DISCUSSION. Geometric measurements showed no significant difference in the UHMWPE particles (Figure 2). The amount of TNF-α released stimulated by the crosslinked virgin particles showed significantly higher relative to the other UHMWPE particles (Figure 3). During crosslinking irradiation, the carbon free radicals are generated in the main chain (3). In the presence of oxygen, these radicals can react to form peroxy radicals and when the peroxy free radicals react with hydrogen they form hydroperoxides, which can further degrade into other oxidation products (4). It has been reported that VE hinders this cascading in UHMWPE (5). Therefore, it is possible that oxidation of the crosslinked virgin UHMWPE was involved in the cytokine response observed in this study. However resin material, molding technique and the irradiation method were different between crosslinked virgin and VE-blended crosslinked samples. Further consideration will be needed to examine the relationship between residual radicals, hydroperoxides and biological response


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 200 - 200
1 Jul 2014
Oral E Neils A Doshi B Muratoglu O
Full Access

Summary. Low energy irradiation of vitamin E blended UHMWPE is feasible to fabricate total joint implants with high wear resistance and impact strength. Introduction. Irradiated ultra-high molecular weight polyethylene (UHMWPE), used in the fabrication of joint implants, has increased wear resistance. But, increased crosslinking decreases the mechanical strength of the polymer, thus limiting the crosslinking to the surface is desirable. Here, we used electron beam irradiation with low energy electrons to limit the penetration of the radiation exposure and achieve surface cross-linking. Methods. Medical grade 0.1wt% vitamin E blended UHMWPE (GUR1050) was consolidated and irradiated using an electron beam at 0.8 and 3 MeV to 150 kGy. Fourier Transform Infrared Spectroscopy (FTIR) was used from the surface along the depth at an average of 32 scans and a resolution of 4 cm. −1. A transvinylene index (TVI) was calculated by normalizing the absorbance at 965 cm. −1. (950–980cm. −1. ) against 1895 cm. −1. (1850 – 1985 cm. −1. ). TVI in irradiated UHMWPE is linearly correlated with the radiation received [3]. Vitamin E indices were calculated as the ratio of the area under 1265 cm. −1. (1245–1275 cm. −1. ) normalized by the same. Pin-on-disc (POD) wear testing was conducted on cylindrical pins (9 mm dia., 13 mm length, n=3) as previously described at 2 Hz [4] for 1.2 million cycles (MC). Wear rate was measured as the linear regression of gravimetric weight change vs. number of cycles from 0.5 to 1.2 MC. Double notched IZOD impact testing was performed (63.5 × 12.7 × 6.35mm) in accordance with ASTM F648. Cubes (1 cm) from 0.1wt% blended and 150 kGy irradiated pucks (0.8 MeV) were soaked in vitamin E at 110°C for 1 hour followed by homogenization at 130°C for 48 hours. Results. The penetration of the electron beam for cross-linking was limited at low beam energy and cross-linking of the surface 2 mm was achieved. The wear rate of samples irradiated at 0.8 and 3 MeV was 1.12±0.15, and 0.98±0.11, respectively (p»0.5). In addition, the wear rate of the surface (0.8 MeV) irradiated UHMWPE was 0.33±0.02 mg/MC 1 mm below the surface. The impact strength of UHMWPE irradiated at 0.8 MeV was 73 kJ/m. 2. and 54.2 kJ/m. 2. for that irradiated at 3 MeV (p=0.001). Doping with vitamin E and homogenization increased the surface vitamin E concentration from undetectable levels to 0.11±0.01. Discussion. The wear rate of this surface cross-linked UHMWPE was comparable to uniformly cross-linked UHMWPEs irradiated at higher electron beam energies. Even lower wear rate subsurface suggested the feasibility of machining 1 mm from the surface in implant fabrication. Limiting cross-linking to the surface resulted in higher impact strength compared to a uniformly cross-linked UHMWPE. Vitamin E was optionally replenished by additional doping after cross-linking; an advantage of this method may be increased oxidation resistance


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 147 - 156
1 Feb 2014
Rajpura A Kendoff D Board TN

We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual’s functional demands.

Cite this article: Bone Joint J 2014;96-B:147–56.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 52 - 54
1 Nov 2012
Rodriguez JA Rathod PA

Large femoral heads have been used with increasing frequency over the last decade. The prime reason is likely the effect of large heads on stability. The larger head neck ratio, combined with the increased jump distance of larger heads result in a greater arc of impingement free motion, and greater resistance to dislocation in a provocative position. Multiple studies have demonstrated clear clinical efficacy in diminishing dislocation rates with the use of large femoral heads. With crosslinked polyethylene, wear has been shown to be equivalent between larger and smaller heads. However, the stability advantages of increasing diameter beyond 38 mm have not been clearly demonstrated. More importantly, recent data implicates large heads in the increasing prevalence of groin pain and psoas impingement. There are clear benefits with larger femoral head diameters, but the advantages of diameters beyond 38 mm have not yet been demonstrated clinically.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 295 - 295
1 May 2010
Bragdon C Greene M Goldvasser D Freiberg A Malchau H
Full Access

Introduction: Electron beam irradiated highly cros-slinked polyethylene has been used in total hip arthroplasty for over 8 years. Due to its low wear characteristics, the use of femoral heads that are greater than 32mm in diameter is now available, allowing for an increase in range of motion and increased stability against dislocation when necessary. The purpose of this study is to provide a summary report on the radiographic analysis of the longest term data available on primary THR patients receiving highly cross-linked polyethylene and to compare the results of two methods of measuring femoral head penetration. Methods: Three prospective clinical studies involving electron beam irradiated highly cross-linked polyethylene have been initiated at our center. To date, the results of: 200 hips with a minimum of 6 year follow-up with conventional sized femoral heads (primarily 28 and 32mm); 45 hips with minimum 5 year follow-up with larger sized femoral heads (primarily 36 and 38mm); and 30 hips with 5 year follow-up enrolled in a Radiostereometric analysis (RSA) study (15 patients with 28mm and 15 patients with 36mm diameter femoral heads); were available for this summary report. Data from patient administered questionnaires (Harris Hip score, UCLA activity score, and WOMAC), radiographic review, and wear analysis using RSA or the Martell Hip Analysis Suite™. In addition, for comparative purposes, wear was measured in a subset of patients using the Devane Polyware™ program. Results: All hips had good clinical outcome at longest follow-up regardless of which femoral head size was used. There were no revisions due to polyethylene wear and no evidence of peri-prosthetic osteolysis. In general, after the bedding in period, there was no significant increase in femoral head penetration regardless of head size. For RSA, the wear rate for the 28mm femoral head group was 0.05±0.02 while the 36mm femoral head group was 0.03±0.02, p=0.13. For the Martell analysis, the average steady-state wear rate was −0.002 ± 0.01 mm per year and −0.026 ± 0.13 mm per year for 28mm and 32mm head sizes, respectively, p=0.62. There was no correlation between wear and time in situ or femoral head size for any of the clinical studies. In comparing the Martell and Devane programs, the total average wear rates were significantly different, 0.07±0.05 and 0.03±0.06mm/year respectively, p=0.01. However, when the absolute values of the Martell results were used, there was no difference, p=0.22. Conclusion: The mid-term follow-up of a large group of primary THR patients receiving highly cross-linked polyethylene components have shown no problems related to the new bearing material. Extremely low wear and lack of peri-prosthetic osteolysis are encouraging results requiring further long-term study


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 46 - 46
1 Mar 2006
Costa L Brach E Bracco P Gallinaro P
Full Access

Introduction. Wear of the UHMWPE component is responsible for many TJR failures. It is now well known that oxidation of UHMWPE, induced by radiation sterilisation in air, dramatically increases the wear rate. ASTM regulations for orthopaedic UHMWPE forbids the addiction of any antioxidant to the polymer powder or to fabricated forms. Vitamin E is widely employed as a biocompatible stabiliser in the food and cosmetic industry. Aim of the present study is to evaluate the efficiency of Vitamin E as a stabiliser for prosthetic UHMWPE. Materials. Virgin UHMWPE samples were obtained from compression moulded slabs (GUR 1020, Perplas). In addiction, compression moulded slabs of GUR 1020 mixed with 500 and 1000 ppm of Vitamin E respectively were also studied. Electron beam irradiation was performed with doses ranging from 50 to 225 kGy, in air, at room temperature. Slices of controlled thickness (0,1–0,3 mm) were microtomed from the blocks and accelerated ageing was carried out in a ventilated oven at 90°C. FTIR spectroscopy were used to monitor changes in the polymer structure after irradiation and ageing. Mechanical properties were evaluated using the small punch test, as described in ASTM F2183-02. Results. FTIR measurements on the aged samples showed that the addiction of Vitamin E induces a substantial increase in the oxidative stability of UHMWPE. The overall work to failure of original UHMWPE irradiated at 100 kGy was halved after 160 hours of accelerated ageing, due to the developed oxidation. On the other hand, the work to failure of samples with Vitamin E was constant up to 1800 hours of ageing under the same conditions. Discussion Irradiation of UHMWPE induces C-C and C-H bond scissions, leading to the formation of alkyl radicals. When irradiation is carried out in air, macroal-kyl radicals can react with oxygen to form hydroperox-ides, which in turn decompose giving other oxidation species, mainly ketones and acids, which decrease the molecular mass. Oxidation of the polymer has been found to cause a dramatic deterioration of its mechanical properties. Vitamin E has been shown to be highly efficient against radiation-induced oxidation and therefore it should be recommended as biocompatible stabilizer for orthopaedic UHMWPE, in order to preserve good mechanical properties