OA pathophysiology has a vascular component consisting of venous stasis resulting in intraosseous hypertension and hypoxia. In response, osteoblasts change their cytokine expression, accelerating bone remodelling and cartilage breakdown consistent with OA. We have characterized circulatory kinetics in OA bone in animal models with dynamic contrast enhanced MRI (DCE-MRI) and . 18. F PET and have demonstrated venous stasis and reduced perfusion that temporally precede and spatially coincide with OA lesions. Osteoblast uptake of . 18. F is consistent with abnormal perfusion, bone remodelling, and severity of OA. Circulatory kinetics with
This is quite an innovative study that should lead to a multicentre validation trial. We have developed an FDG-PET/MRI texture-based model for the prediction of lung metastases (LM) in newly diagnosed patients with soft-tissue sarcomas (STSs) using retrospective analysis. In this work, we assess the model performance using a new prospective STS cohort. We also investigate whether incorporating hypoxia and perfusion biomarkers derived from FMISO-PET and
Objectives. Hips with metal-on-metal total hip arthroplasty (MoM THA) have a high rate of adverse local tissue reactions (ALTR), often associated with hypersensitivity reactions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measures tissue perfusion with the parameter Ktrans (volume transfer constant of contrast agent). Our purpose was 1) to evaluate the feasibility of
Purposes of the study. To assess the performance of an acellular synthetic scaffold in the treatment of painful partial meniscal tissue loss. Methods. Subjects recruited (n=52) had irreparable medial or lateral meniscus partial meniscus loss, intact rim, presence of both horns and a stable well aligned knee. Diagnostic imaging was used to assess tissue ingrowth at 3 months post-implantation by evidence of vascularisation in the scaffold using