Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Bone & Joint 360
Vol. 13, Issue 2 | Pages 8 - 12
1 Apr 2024
Craxford S


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 751 - 759
1 Jul 2023
Lu V Andronic O Zhang JZ Khanduja V

Aims

Hip arthroscopy (HA) has become the treatment of choice for femoroacetabular impingement (FAI). However, less favourable outcomes following arthroscopic surgery are expected in patients with severe chondral lesions. The aim of this study was to assess the outcomes of HA in patients with FAI and associated chondral lesions, classified according to the Outerbridge system.

Methods

A systematic search was performed on four databases. Studies which involved HA as the primary management of FAI and reported on chondral lesions as classified according to the Outerbridge classification were included. The study was registered on PROSPERO. Demographic data, patient-reported outcome measures (PROMs), complications, and rates of conversion to total hip arthroplasty (THA) were collected.


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1151 - 1159
1 Sep 2019
Oike N Kawashima H Ogose A Hatano H Ariizumi T Kaidu M Aoyama H Endo N

Aims

We analyzed the long-term outcomes of patients observed over ten years after resection en bloc and reconstruction with extracorporeal irradiated autografts

Patients and Methods

This retrospective study included 27 patients who underwent resection en bloc and reimplantation of an extracorporeal irradiated autograft. The mean patient age and follow-up period were 31.7 years (9 to 59) and 16.6 years (10.3 to 24.3), respectively. The most common diagnosis was osteosarcoma (n = 10), followed by chondrosarcoma (n = 6). The femur (n = 13) was the most frequently involved site, followed by the tibia (n = 7). There were inlay grafts in five patients, intercalary grafts in 15 patients, and osteoarticular grafts in seven patients. Functional outcome was evaluated with the Musculoskeletal Tumor Society (MSTS) scoring system.


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1681 - 1688
1 Dec 2017
Jones CW Shatrov J Jagiello JM Millington S Hong A Boyle R Stalley PD

Aims

We present a retrospective review of patients treated with extracorporeally irradiated allografts for primary and secondary bone tumours with the mid- and long-term survivorship and the functional and radiographic outcomes.

Patients and Methods

A total of 113 of 116 (97.4%) patients who were treated with extracorporeally irradiated allografts between 1996 and 2014 were followed up. Forms of treatment included reconstructions, prostheses and composite reconstructions, both with and without vascularised grafts. Survivorship was determined by the Kaplan-Meier method. Clinical outcomes were assessed using the Musculoskeletal Tumor Society (MSTS) scoring system, the Toronto Extremity Salvage Score (TESS) and Quality of Life-C30 (QLQ-30) measures. Radiographic outcomes were assessed using the International Society of Limb Salvage (ISOLS) radiographic scoring system.


The Bone & Joint Journal
Vol. 97-B, Issue 5 | Pages 582 - 589
1 May 2015
Brennan SA Ní Fhoghlú C Devitt BM O’Mahony FJ Brabazon D Walsh A

Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

Cite this article: Bone Joint J 2015; 97-B:582–9.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 28 - 30
1 Oct 2014

The October 2014 Oncology Roundup360 looks at: how best to reconstruct humeral tumours; not everything is better via the arthroscope; obesity and sarcoma; frozen autograft; en-bloc resection and metastatic disease; positive margins in soft-tissue injuries; lipomatous tumours explored; and what happens with recurrence of osteosarcoma.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 555 - 561
1 Apr 2014
Igarashi K Yamamoto N Shirai T Hayashi K Nishida H Kimura H Takeuchi A Tsuchiya H

In 1999, we developed a technique for biological reconstruction after excision of a bone tumour, which involved using autografts of the bone containing the tumour treated with liquid nitrogen. We have previously reported the use of this technique in 28 patients at a mean follow up of 27 months (10 to 54).

In this study, we included 72 patients who underwent reconstruction using this technique. A total of 33 patients died and three were lost to follow-up, at a mean of 23 months (2 to 56) post-operatively, leaving 36 patients available for a assessment at a mean of 101 months 16 to 163) post-operatively. The methods of reconstruction included an osteo-articular graft in 16, an intercalary in 13 and, a composite graft with prosthesis in seven.

Post-operative function was excellent in 26 patients (72.2%), good in seven (19.4%), and fair in three (8.3%) according to the functional evaluation system of Enneking. No recurrent tumour occurred within the grafts. The autografts survived in 29 patients (80.6%), and the rates of survival at five and ten years were 86.1% and 80.6 %, respectively. Seven of 16 osteo-articular grafts (44%) failed because of fracture or infection, but all the composite and intercalary grafts survived.

The long-term outcomes of frozen autografting, particularly using composite and intercalary grafts, are satisfactory and thus represent a good method of treatment for patients with a sarcoma of bone or soft tissue.

Cite this article: Bone Joint J 2014;96-B:555–61.


Bone & Joint 360
Vol. 2, Issue 6 | Pages 22 - 24
1 Dec 2013

The December 2013 Shoulder & Elbow Roundup360 looks at: Platelet-rich plasma; Arthroscopic treatment of sternoclavicular joint osteoarthritis; Synchronous arthrolysis and cuff repair; Arthroscopic arthrolysis; Regional blockade in the beach chair; Recurrent instability; Avoiding iatrogenic nerve injury in elbow arthroscopy; and Complex reconstruction of total elbow revisions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 64 - 64
1 Apr 2013
Yamano Y Sakanaka H Gotani H Teraura H Komatsu T
Full Access

We have done emergency vascularized composite graft by microsurgical technique for severe open fractures. It is essential for open injury to cover bones, joints, tendons etc. Vascularized composite graft for open fracture with tissue defect covers bone etc., prevents infection and promotes subsequent early functional recovery. Eighteen patients aged 3–55year old with an average age of 23.1y.o. were treated with this methos. Traffic injuries of leg and foot in children were the most common and others were open severe fracture with tissue defects. The composite graft employed were peroneal osteocutaneous flap, latissimus dolsi flap, parascapular flap and groin flap. The advantage of these flaps to cover the damaged structure primrily facilitatrs rapid tissue repair without infection and scar formation. In fact, except one reoperation due to a skin necrosis in parascapular flap, all grafted flaps successfully repaired the severe damaged bone and joint. Sufficient perfusion of antibiotics by these vascularized flap prevents infection in all cases. Primary emergency vascularized composite graft for severe open fracture with tissue defect is shown to be extremely useful method with rapid repair and functionnal recovery


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 29 - 29
1 Apr 2013
Yamano Y Sakanaka H Gotani H
Full Access

Infected non-union after severe open fracture or unsuitable fracture operation is frequently associated with bone defect and its treatment has been controversial. We have used microsurgical vascularised composite graft for these problematic cases. Fifty one patients aged 17∼70 year old (43.6 years old in average), including 41 men and 10 women. Follow-up has been more than 6 months. The vascularised composite graft included a free fibular osteocutaneous flap in 41 cases, a vascular pedicled fibular osteocutaneous flap in 2 cases, a free iliac osteocutaneous flap in 5 cases, a vascularised cutaneous flap in 2 cases and other in one case. All infected non-unions were united without trouble and co-existing infection was successfully eradicated. This method also enables the patients rapid bone union and subsequent early functional recovery. This success was attributed to greater transport of oxygen and good antibiotic perfusion in presence of good blood supply. We conclude that microsurgical vascularised composite graft for infected non-union is an extremely useful method with early bone union and subsidence of infection


Bone & Joint 360
Vol. 1, Issue 6 | Pages 30 - 32
1 Dec 2012

The December 2012 Research Roundup360 looks at: whether the rheumatoid factor is just a ‘quick test’; osteonecrosis in smokers; pasteurisation effect on bone reconstruction; venous thromboembolism risk in rheumatoids; whether stem cells reverse age-related osteopenia; the effect of running on rat knees; rapid fracture healing in rats with ultrasound; magnetic stem cells; and the safety of surgery.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 211 - 211
1 Sep 2012
Tayton E Fahmy S Aarvold A Smith J Kalra S Briscoe A Shakesheff K Howdle S Dunlop D Oreffo R
Full Access

Aims

Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft).

The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form de novo bone.

Methods

High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft.

A second stage of the experiment involved the addition of skeletal stem cells (SSC) to each of the milled polymers, impaction, 8 days incubation, and then tests for cell viability and number, via fluorostaining and biochemical (WST-1) assays.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 20 - 20
1 Aug 2012
Tayton E Fahmy S Aarvold A Smith J Kalra S Briscoe A Purcell M Shakesheff K Howdle S Dunlop D Oreffo R
Full Access

Impaction bone grafting with milled human allograft is the gold standard for replacing lost bone stock during revision hip surgery. Problems surrounding the use of allograft include cost, availability, disease transmission and stem subsidence (usually due to shear failure of the surrounding allograft).

The aim of this study was to investigate various polymers for use as substitute allograft. The ideal graft would be a composite with similar mechanical characteristics as allograft, and with the ability to form de novo bone.

High and low molecular weight (MW) forms of three different polymers (polylactic acid (PLA), poly (lactic co-glycolic) acid (PLGA) and polycaprolactone (PCL)) were milled, impacted into discs, and then tested in a custom built shear testing rig, and compared to allograft.

A second stage of the experiment involved the addition of skeletal stem cells (SSC) to each of the milled polymers, impaction, 8 days incubation, and then tests for cell viability and number, via fluorostaining and biochemical (WST-1) assays.

The shear strengths of both high/ low MW PLA, and high/low MW PLGA were significantly higher than those of milled allograft (P<0.001, P<0.001, P<0.005 and P<0.005) but high and low MW PCL was poor to impact, and had significantly lower shear strengths (P<0.005, P<0.001). Fluorostaining showed good cell survival on high MW PLA, high MW PCL and high MW PLGA. These findings were confirmed with WST-1 assays.

High MW PLA as well as high MW PLGA performed well both in mechanical testing and cell compatibility studies. These two polymers are good contenders to produce a living composite for use as substitute human allograft in impaction bone grafting, and are currently being optimised for this use via the investigation of different production techniques and in-vivo studies.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 11 - 11
1 May 2012
Stalley P
Full Access

Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive allograft reconstructions became widespread in both Europe and in multiple centres in the USA and UK. Since that time, increasing complexity in the design of prostheses has allowed for increasing functional reconstructions to occur, but the use of allograft has become less popular due to the development of late graft failures of patients survive past ten years. Fracture rates approaching 50% at 10 years are reported, and thus, other forms of reconstruction are being sought. Techniques of leg lengthening, and bone docking procedures to replace segmental bone loss to tumour are now employed, but the use of biological vascularised reconstructions are becoming more common as patient survivorship increases with children surviving their disease. The use of vascularised fibular graft, composite grafts and re-implantation of extra-corporeally irradiated bone segments are becoming more popular. The improvement in survivorship brought about the use of chemotherapy is producing a population of patients with at least a 65% ten year survivorship, and as many of these patients are children, limb salvage procedures have to survive for many decades. The use of growing prostheses for children have been available for some 25 years, first commencing in Stanmore, UK, with mechanical lengthening prostheses. Non-invasive electro-magnetic induction coil mechanisms are now available to produce leg lengthening, with out the need for open surgery. Whilst many of these techniques have great success, the area of soft tissue attachment to metallic prostheses has not been solved, and reattachment of muscles is of great importance, of course, for return of function. There are great problems in the shoulder joints where sacrifice of rotator cuff muscles is necessary in obtaining adequate disease clearance at the time of primary resection, and a stable shoulder construct, with good movement, has yet to emerge. Similar areas of great difficultly remain the peri-acetabular and sacro-iliac resections in the pelvis. Perhaps the real future of the art of limb salvage will be in the reconstruction of failed major joint replacements where there is great loss of bone stock, and already massive tumour prostheses are providing a salvage pathway for failed standard joint replacement. The final future for limb salvage, however, may not rest with increasing surgical complexity and innovation, but with the development of molecular biology and specific targeted treatments, according to the cytogenetics of a particular tumour. We are on the threshold of yet another quantum change in the approach to cancer management; just as chemotherapy brought a tremendous change in the 1970s, molecular biology is the frontier to make much of the current limb salvage surgery that is performed redundant


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 273 - 273
1 Jul 2011
Alexander DI Oxner WM Soroceanu AM Kelly A Shakespeare D
Full Access

Purpose: The current gold standard for spinal arthrodesis, autologous bone graft harvested from the iliac crest, has several disadvantages including donor site morbidity, blood loss, delayed wound healing, and increased operative time. Our study explores a Demineralized Bone Matrix-Calcium Sulfate(DBM-CaSO4) composite graft with autologous bone marrow aspirate (BMA), and compares it to autologous iliac crest bone graft in lumbar and lumbosacral spinal fusions. Method: A total of 80 patients were recruited for the study and randomised, via a computer-generated ran-domisation schedule, to autologous iliac crest bone graft (control) or DBM-CaSO4 composite graft with BMA (study) groups. Patients were evaluated at three-months, six-months, 12-months and 24-months post-operatively with questionnaires to evaluate clinical outcome (Oswestry disability questionnaire (ODI), visual analogue pain scales (VAS), and validated SF-36) and with posteroanterior and lateral x-rays of the spine to evaluate radiological outcome. Results: At 24-months post-operatively, there were no statistical differences seen between the two groups based on the clinical outcomes measured. Average ODI values were 27.19 for the control group versus 22.68 for the study group (p > 0.05). The average back VAS pain for the control group was 3.50 versus 3.51 for the study group (p > 0.05). The SF-36 score was 89.22 for the control group versus 91.56 for the study group (p > 0.05). The average operative time was 115.7 minutes for the control group versus 104.2 minutes for the study group (p: 0.014). Average calculated blood loss was 571.9 cc for the control group versus 438.2 cc for the study group (p: 0.025). The Lenke score was 1.92 for the control group versus 2.66 for the study group (p: 0.004). Conclusion: At two year follow-up, radiographic fusion was slightly higher in the ICBG. However, clinical outcomes were equivalent in both groups. Moreover, the DBM-CaSO4 and BMA composite graft offered the advantages of decreased blood loss and shorter operative time. Therefore, the DBM-CaSO4 and BMA composite graft represents a viable alternative to autologous iliac crest bone graft in carefully selected patients undergoing spinal arthrodesis


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 580 - 580
1 Oct 2010
Kopylov P Abramo T Afendras G Tägil M
Full Access

Purpose: The management of Dorsal Fracture Dislocations of the PIP joint is challenging, especially for the unstable ones. Complications are common and often lead to functional disability. Many treatment methods have been described in the past, illustrating that no optimal solution has been found. In the Hemi-Hamate autograft technique, introduced by Hastings in 1999, a reconstruction of the volar lip joint surface and stabilization of the joint is achieved. This autograft can be seen as a model of a non vascularised bone-cartilage composite graft. The purpose of the present retrospective study was to evaluate the long term results of the hemi-hamate autograft technique in unstable PIP fracture-dorsal dislocations with special reference to posttraumatic degenerative arthritis common in non vascularized joint transfers. Materials and Methods: We report the results of 9 patients operated between November 2002 and March 2008 and with a minimum follow up of 26 months. The mean follow-up time was 56 months. There were 6 men and 3 women with a mean age at operation of 45 years (23–66). All fractures were unstable with comminution of the volar lip. In 3 patients the dominant hand was involved. The middle finger was injured in 4 patients, the ring finger in 4 and the little finger in 1 patient. All patients were treated with the operation technique described by Hastings and reanalyzed by Williams. The volar base of middle phalanx was debrided and reconstructed by a pre-sized autograft harvested from the dorsal side of the homolateral hamatum, and fixed with mini screws. A standard rehabilitation program was used postoperatively. Clinical (ROM, grip strength), radiographic and subjective outcomes (VAS) were examined in all patients. Results: At the last follow up, the injured finger had an average active ROM at the MCP joints of 97o (90o–115o) at the PIP 69 o (45 o –95 o) and at the DIP 59 o (30 o –90 o). The extension lag in the PIP joints were mean 10 o (0 o –30 o). Grip strength of the injured hand was mean 89% of the uninjured contralateral side. On radiographs, severe arthritis in the treated PIP was found in 2 of 9 patients. Another 2 patients had degenerative arthritis in several PIP. The average subjective score of patient’s satisfaction was 85 (20–100) in a scale 0–100 (100 best). Conclusions: The Hemi-Hamate autograft technique is a technically demanding operation but an alternative to arthrodesis or primary joint arthroplasty in the treatment of Fracture-Dorsal Dislocations of PIP joint. Our results are good and comparable to previously reported results (Williams 2001). Some deterioration will occur regarding joint osteoarthritis but a high degree of subjective patient satisfaction was found. Further studies and methods to decrease the osteoarthritis would be preferential


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 76 - 76
1 Mar 2010
Ricci W Watson J Borrelli J Weber T Choplin R Persohn S White R
Full Access

Purpose: Bone grafting of subchondral voids during ORIF of tibial plateau fractures is commonly performed. The efficacy of various graft materials to resist post-operative articular displacement and stimulate bone regeneration in the grafted zone, remains largely unstudied. Studies in animals with a new composite material have shown that this composite material leads to greater bone formation and stronger bone versus autograft at 13 and 26 weeks. This study was designed to determine whether this material helps resist articular fragment displacement and leads to stronger bone regeneration and better functional outcome in the treatment of tibial plateau fractures. Methods: Thirty four patients with unilateral tibial plateau fractures (OTA 41A-B), were enrolled in a prospective multicenter single cohort study. The treatment protocol included ORIF and defect augmentation with a composite bone graft substitute (PRODENSE®, Wright Medical Technology). Reduction and bone formation was evaluated and followed with both plain radiographs and CT scans obtained immediately postop and at 12 and 24 weeks. Functional outcome was assessed using the SMFA scores. CT analysis was performed by an independent musculoskeletal radiologist who quantified maintenance of reduction of the articular surface and bone density within the grafted area. Results: Eighteen of the 34 enrolled patients were eligible for follow-up at 24 weeks (sixteen were not yet eligible for the 24 week time point). Mean change in articular reduction was 0.75mm, Density measures in the region of the initial subchondral void decreased from a mean of 1400 Hounsfield units at baseline (immediately post-op) to 600 at 24 weeks, suggesting bone regeneration and normal remodeling. Short form Musculoskeletal Function Assessment activity scores improved from 55.15 (SD=42.8) at baseline to 20.92 (SD=18.09) at 24 weeks. Complications include 1 DVT, 3 infections and 1 cellulitis, all of which resolved. There was an additional infection that required revision of the ORIF. Conclusions and Significance: Serial CT evaluations revealed maintenance of post-operative reduction with displacement of less than 1mm. Bone density, in the region of the grafted area was near normal and confirms that the composite graft material promotes strong bone regeneration. Functional outcomes improved with time from surgery and approached that of uninjured cohorts


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 2 - 2
1 Mar 2010
Gitelis S Turner T Urban R
Full Access

Purpose: To test a CaSO4/CaPO4-TCP composite bone graft substitute in a crtically sized bone defect. Method: Twenty dogs had a contained medullary defect created in the proximal humerus. In ten dogs, the defect was treated with CaSO4/CaPO4-TCP composite graft (PRO-DENSE. ™. , Wright Medical) and studied for 13 weeks (N=5) and 26 weeks (N=5). In the other ten dogs, the defect was treated with autograft and followed for 13 weeks. An additional ten unoperated humeri were used to establish the properties of normal canine bone. The area fraction, ultimate compressive stress and modulus of elasticity of bone in the experimental and normal humeri were quantified using histomorphometric and mechanical methods and analyzed using the Mann-Whitney test. Results: At 13 weeks, the area fraction, compressive stress and modulus of elasticity of new bone in the defects was several-fold greater (p ≤ 0.005) using CaSO4/CaPO4-TCP composite graft compared to defects treated with autograft. The area fraction and compressive stress of new bone using CaSO4/CaPO4-TCP composite graft were also several fold greater (p≤.009) compared to normal bone, but there was no difference in the modulus of elasticity. Although the compressive stress was still greater (p=0.047) at 26 weeks for defects treated with the composite graft compared to normal bone, the regenerated bone had remodeled to a normal cancellous architecture, incorporating minute fragments of residual graft. Conclusion: CaSO4/CaPO4-TCP composite graft produced a several-fold greater amount and strength of bone than autogenous graft bone at 13 weeks. There was no modulus mismatch between the regenerated and native cancellous bone. The composite graft holds promise for non-load bearing applications where dense, strong bone formation at earlier time points would be advantageous, potentially resulting in quicker return to activity


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1431 - 1437
1 Nov 2009
Biring GS Kostamo T Garbuz DS Masri BA Duncan CP

We report the outcome at ten to 15 years of two-stage revision for hip infection in 99 patients using the Prostalac articulated hip spacer system.

All the patients were contacted to determine their current functional and infection status using the Oxford-12, Short form-12, and Western Ontario and McMaster University Osteoarthritis Index questionnaires. A total of 11 of the 99 patients had a further infection, of whom seven responded to repeat surgery with no further sequelae. The mean interval between the stages was five months (1 to 36). We were able to review 48 living patients, with a mean age of 72 years (46 to 86), 34 (71%) of whom provided health-related quality-of-life outcome scores.

The mean follow-up was 12 years (10 to 15). The long-term success rate was 89% and with additional surgery this rose to 96%. The mean global Western Ontario and McMaster University Osteoarthritis Index score was 80.6 (sd 18.3). The mean Oxford-12 score was 74.0 (sd 22.3), and the mean Short form-12 score was 53.1 (sd 9.4) (mental) and 33.5 (sd 13.5) (physical). The mean satisfaction score was 90.5 (sd 15.3).

Two-stage revision for hip infection using a Prostalac interim spacer offers a predictable and lasting solution for patients with this difficult problem.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 331 - 331
1 May 2009
Hungerford D
Full Access

Core decompression is a common treatment for early stage osteonecrosis of the femoral head due to the simplicity of the procedure and the positive results of this intervention. A number of different core decompression methods exist: including methods backfilled by a bone graft material and those without filling. Due to the inherent desire that the core decompression defect regenerate healthy bone, reduce pain, and stave off the need for total hip arthroplasty for some period of time, this surgically created defect is an excellent application for the use of a bone graft substitute. Recently, an injectable calcium sulfate (CaSO. 4. )/calcium phosphate (CaPO. 4. ) composite graft has become available for use in the treatment of surgically created defects. The synthetic graft is an injectable composite of CaSO. 4. , tricalcium phosphate (TCP) granules, and brushite that hardens in situ. The triphasic resorption pattern exhibited by this material in vitro and in pre-clinical canine studies has indicated that the CaSO. 4. matrix resorbs at early time points to reveal a longer resorbing CaPO. 4. scaffold for bone onlay. In a canine proximal humerus model, the use of this material in a critical bone defect has demonstrated a regenerate with higher compressive strength at 13 week time points than defects treated with CaSO. 4. alone, defects treated with autograft, and normal untreated bone. By 26 weeks, the regenerated bone within the defect resembled normal bony architecture with similar mechanical properties. Early clinical series have indicated similar results to the canine studies. Reports of early clinical findings have included a 12 patient benign bone tumor series with 4–12 month follow up and a core decompression series of 38 Ficat stage I–III hips with 6–16 month follow up. Preliminary radiological results in the bone tumor series showed peripheral resorption of the injectable CaSO. 4. /CaPO. 4. composite with new bone formation along the resorbing edge. Clinically, patients in the bone cyst series have not experienced fractures or additional surgery and all patients have displayed full functional recovery. In the core decompression series, 32 of the 38 hips experienced pain relief and within the subset of 30 symptomatic hips, 24 had pain relief. These results, although preliminary, are promising outcomes. Collectively, the pre-clinical and preliminary clinical results indicate that the use of an injectable CaSO. 4. /CaPO. 4. composite could prove to be of benefit in core decompression of the femoral head. The staged resorption and dense bone formation evidenced in canine studies would be desirable in core decompression techniques where healthy bony ingrowth is the goal. Due to the straightforward compilation and use of this composite, the incorporation of this material as a backfill matrix into the core decompression procedure is technically simple. Although additional studies are certainly merited, these early clinical results are encouraging