The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface. Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up.Aims
Methods
This prospective study reports longitudinal, within-patient, patient-reported outcome measures (PROMs) over a 15-year period following cemented single radius total knee arthroplasty (TKA). Secondary aims included reporting PROMs trajectory, 15-year implant survival, and patient attrition from follow-up. From 2006 to 2007, 462 consecutive cemented cruciate-retaining Triathlon TKAs were implanted in 426 patients (mean age 69 years (21 to 89); 290 (62.7%) female). PROMs (12-item Short Form Survey (SF-12), Oxford Knee Score (OKS), and satisfaction) were assessed preoperatively and at one, five, ten, and 15 years. Kaplan-Meier survival and univariate analysis were performed.Aims
Methods
Recent publications have drawn attention to the fact that some brands of joint replacement may contain variants which perform significantly worse (or better) than their ‘siblings’. As a result, the National Joint Registry has performed much more detailed analysis on the larger families of knee arthroplasties in order to identify exactly where these differences may be present and may hitherto have remained hidden. The analysis of the Nexgen knee arthroplasty brand identified that some posterior-stabilized combinations have particularly high revision rates for aseptic loosening of the tibia, and consequently a medical device recall has been issued for the Nexgen ‘option’ tibial component which was implicated. More elaborate signal detection is required in order to identify such variation in results in a routine fashion if patients are to be protected from such variation in outcomes between closely related implant types. Cite this article:
Abstract. Introduction. There are a wide variety of implant brands and types of knee replacement available to surgeons. With time, the options available within many implant brand portfolios has grown, with alternative tibial or femoral components, tibial insert materials or shapes and patella resurfacings. Aim. To investigate the effect of the expansion of implant brand portfolios, and to establish the potential numbers of compatible implant construct combinations. Methods. Hypothetical implant brand portfolios were proposed, and the number of compatible implant construct combinations was calculated. Results. A simple knee portfolio with cemented cruciate-retaining (CR) and posterior-stabilised (PS) components, with and without a patella has 4 combinations. If there are two options available for each, the numbers double for each option, resulting in 32 combinations. The effect of adding a third option multiplies the number by 1.3. Introducing compatible uncemented options, with the effect of hybrids multiplies the number by 4. An implant portfolio with two femoral components (both in CR and PS), with two insert options and a patella, all in cemented and uncemented versions leads to 192 possible compatible implant construct combinations. There are implant brands available with many more than two options available for use. Conclusion. This study demonstrates that the addition of multiple variants within a knee brand portfolio leads to a large number (many hundreds) of compatible implant construct combinations. Revision rates of implant combinations are not currently reviewed at this level of granularity, leading to the risk of implant
Aims. Knee arthroplasty surgery is a highly effective treatment for arthritis and disorders of the knee. There are a wide variety of implant brands and types of knee arthroplasty available to surgeons. As a result of a number of highly publicized failures, arthroplasty surgery is highly regulated in the UK and many other countries through national registries, introduced to monitor implant performance, surgeons, and hospitals. With time, the options available within many brand portfolios have grown, with alternative tibial or femoral components, tibial insert materials, or shapes and patella resurfacings. In this study we have investigated the effect of the expansion of implant brand portfolios and where there may be a lack of transparency around a brand name. We also aimed to establish the potential numbers of compatible implant construct combinations. Methods. Hypothetical implant brand portfolios were proposed, and the number of compatible implant construct combinations was calculated. Results. A simple knee portfolio with cemented cruciate-retaining (CR) and posterior-stabilized (PS) components, with and without a patella, has four combinations. If there are two options available for each component, the numbers double for each option, resulting in 32 combinations. The effect of adding a third option multiplies the number by 1.3. Introducing compatible uncemented options, with the effect of hybrids, multiplies the number by 4. An implant portfolio with two femoral components (both in CR and PS), with two insert options and a patella, all in cemented and uncemented versions leads to 192 possible compatible implant construct combinations. There are implant brands available to surgeons with many more than two options. Conclusion. This study demonstrates that the addition of multiple variants within a knee brand portfolio leads to a large number (many hundreds) of compatible implant construct combinations. Revision rates of implant combinations are not currently reviewed at this level of granularity, leading to the risk of
Introduction. Looking for optimal solutions to wear risks evident in total hip arthroplasty (THA), silicon nitride ceramic bearings (Si. 3. N. 4. ) are noted for demanding high-temperature applications such as diesel engines and aerospace bearings. As high-strength ceramic for orthopedic applications, Si. 3. N. 4. offers improved fracture toughness and fracture strength over contemporary aluminas (Al. 2. O. 3. ). Our pilot studies of Si. 3. N. 4. in 28mm diameter THA showed promising results at ISTA meeting of 2007. 1. In this simulator study, we compared the wear resistance of 40mm to 28mm diameter Si. 3. N. 4. bearings. The 28mm and 40mm bearings (Fig. 1) were fabricated from Si. 3. N. 4. powder (Amedica Inc, Salt Lake City, UT). 1. Wear tests run were run at 3kN peak load in an orbital hip simulator (SWM, Monrovia, CA) and. The lubricant was standard bovine serum (Hyclone: diluted to 17 mg/ml protein concentration). Wear was measured by gravimetric method and wear-rates calculated by linear regression. SEM and interferometic microscopic was performed at 3.5-million cycles (3.5Mc) to 12Mc. The simulator was run to 3.5Mc duration with no consistent weight-loss trends. The bearings could show either small positive or negative weight fluctuations in an unpredictable manner (Fig. 2). Surface analysis showed protein layers up to 3μm thick, furrowed due to abrasion by small particles (Fig. 3). The low ceramic wear was