Advertisement for orthosearch.org.uk
Results 1 - 20 of 114
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 435 - 441
1 May 2024
Angelomenos V Mohaddes M Kärrholm J Malchau H Shareghi B Itayem R

Aims

Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered femoral stem fixed with either Refobacin Bone Cement R or Palacos R + G bone cement. Repeated radiostereometric analysis was used to measure migration of the femoral head centre. The secondary aims were evaluation of cement mantle, stem positioning, and patient-reported outcome measures.

Methods

Overall, 75 patients were included in the study and 71 were available at two years postoperatively. Prior to surgery, they were randomized to one of the three combinations studied: Palacos cement with use of the Optivac mixing system, Refobacin with use of the Optivac system, and Refobacin with use of the Optipac system. Cemented MS30 stems and cemented Exceed acetabular components were used in all hips. Postoperative radiographs were used to assess the quality of the cement mantle according to Barrack et al, and the position and migration of the femoral stem. Harris Hip Score, Oxford Hip Score, Forgotten Joint Score, and University of California, Los Angeles Activity Scale were collected.


Bone & Joint 360
Vol. 13, Issue 2 | Pages 50 - 50
1 Apr 2024


Bone & Joint 360
Vol. 13, Issue 1 | Pages 46 - 46
1 Feb 2024


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 77 - 77
2 Jan 2024
Khiabani A Kovrlija I Locs J Loca D Gasik M
Full Access

Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 117 - 117
2 Jan 2024
Bektas E Wesdorp MA Schwab A Stoddart M Mata A Van Osch G D'Este M
Full Access

Biomaterials with mechanical or biological competence are ubiquitous in musculoskeletal disorders, and understanding the inflammatory response they trigger is key to guide tissue regeneration. While macrophage role has been widely investigated, immune response is regulated by other immune cells, including neutrophils, the most abundant leukocyte in human blood. As first responders to injury, infection or material implantation, neutrophils recruit other immune cells, and therefore influence the onset and resolution of chronic inflammation, and macrophage polarization. This response depends on the physical and chemical properties of the biomaterials, among other factors. In this study we report an in vitro culture model to describe the most important neutrophil functions in relation to tissue repair. We identified neutrophil survival and death, neutrophils extracellular trap formation, release of reactive oxygen species and degranulation with cytokines release as key functions and introduced a corresponding array of assays. These tests were suitable to identify clear differences in the response by neutrophils that were cultured on material of different origin, stiffness and chemical composition. Overall, substrates from biopolymers of natural origin resulted in increased survival, less neutrophil extracellular trap formation, and more reactive oxygen species production than synthetic polymers. Within the range of mechanical properties explored (storage modulus below 5 k Pa), storage modulus of covalently crosslinked hyaluronic acid hydrogels did not significantly alter neutrophils response, whereas polyvinyl alcohol gels of matching mechanical properties displayed a response indicating increased activation. Additionally, we present the effect of material stiffness, charge, coating and culture conditions in the measured neutrophils response. Further studies are needed to correlate the neutrophil response to tissue healing. By deciphering how neutrophils initiate and modulate the immune response to material implantation, we aim at introducing new principles to design immunomodulatory biomaterials for musculoskeletal disorders. Acknowledgments. This work was supported by the AO Foundation, AO CMF, grant AOCMF-21-04S


Bone & Joint Open
Vol. 4, Issue 8 | Pages 643 - 651
24 Aug 2023
Langit MB Tay KS Al-Omar HK Barlow G Bates J Chuo CB Muir R Sharma H

Aims

The standard of wide tumour-like resection for chronic osteomyelitis (COM) has been challenged recently by adequate debridement. This paper reviews the evolution of surgical debridement for long bone COM, and presents the outcome of adequate debridement in a tertiary bone infection unit.

Methods

We analyzed the retrospective record review from 2014 to 2020 of patients with long bone COM. All were managed by multidisciplinary infection team (MDT) protocol. Adequate debridement was employed for all cases, and no case of wide resection was included.


Bone & Joint 360
Vol. 12, Issue 4 | Pages 48 - 48
1 Aug 2023


Bone & Joint 360
Vol. 12, Issue 3 | Pages 44 - 44
1 Jun 2023


Bone & Joint Research
Vol. 12, Issue 5 | Pages 311 - 312
5 May 2023
Xu C Liu Y

Cite this article: Bone Joint Res 2023;12(5):311–312.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 89 - 89
11 Apr 2023
Dascombe L Le Maitre C Aberdein N
Full Access

This study aimed to characterise the microarchitecture of bone in different species of animal leading to the development of a physiologically relevant 3D printed cellular model of trabecular (Tb) and cortical bone (CB). Using high resolution micro-computed tomography (μ-CT) bone samples from multiple species were scanned and analysed before creating in silico models for 3D printing. Biologically relevant printing materials with physical characteristics similar to that of in vivo bone will be selected and tested for printability. Porcine and murine bone samples were scanned using μ-CT, with a resolution of 4.60 μM for murine and 11 μM for porcine and reconstructed to determine the architectural properties of both Tb and CB independently. A region of interest, 1 mm in height, will be used to generate an in-silico 3D model with dimensions (10 mm. 3. ) and suitable resolution before being translated into printable G code using CAD assisted software. A 1 mm section of each bone was analysed, to determine the differences in the microarchitecture with the intent of setting a benchmark for the developmental 3D in vitro model to be comparable against. In contrast, porcine caudal vertebrae (PCV) have an increased volume due to the size of the bone sample. Interestingly, BV/TR for Tb is similar between species in all samples except murine femur. Murine tibia and PCV have a similar Tb. number and thickness, however different SMI shape and separation. μ-CT scanning and analysis permits tessellation of the 3D output which will lead to the generation of an in silico printable model. Biomaterials are currently under optimisation to allow printability and shape integrity to reflect the morphological and physiological properties of bone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 90 - 90
11 Apr 2023
Williams R Snuggs J Schmitz T Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated.

Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition.

Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel with maintenance of morphology and low caspase 3 staining. NPgel and Albugel maintained NC cell markers (brachyury and cytokeratin 8/18/19) and extracellular matrix (collagen type II and aggrecan). Whilst Brachyury and Cytokeratin were decreased in dNCM/NPgel biomaterials, Aggrecan and Collagen type II was seen in acellular and NC containing dNCM/NPgel materials. NC containing constructs excreted more GAGs over the four weeks than the acellular controls.

NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 50 - 50
4 Apr 2023
Wang Z van den Beucken J van den Geest I Leeuwenburgh S
Full Access

Residual tumor cells left in the bone defect after malignant bone tumor resection can result in local tumor recurrence and high mortality. Therefore, ideal bone filling materials should not only aid bone reconstruction or regeneration, but also exert local chemotherapeutic efficacy. However, common bone substitutes used in clinics are barely studied in research for local delivery of chemotherapeutic drugs. Here, we aimed to use facile manufacturing methods to render polymethylmethacrylate (PMMA) cement and ceramic granules suitable for local delivery of cisplatin to limit bone tumor recurrence.

Porosity was introduced into PMMA cement by adding 1-4% carboxymethylcellulose (CMC) containing cisplatin, and chemotherapeutic activity was rendered to two types of granules via adsorption. Then, mechanical properties, porosity, morphology, drug release kinetics, ex vivo reconstructive properties of porous PMMA and in vitro anti-cancer efficacy against osteosarcoma cells were assessed. Morphologies, molecular structures, drug release profiles and in vitro cytostatic effects of two different drug-loaded granules on the proliferation of metastatic bone tumor cells were investigated.

The mechanical strengths of PMMA-based cements were sufficient for tibia reconstruction at CMC contents lower than 4% (≤3%). The concentrations of released cisplatin (12.1% and 16.6% from PMMA with 3% and 4% CMC, respectively) were sufficient for killing of osteosarcoma cells, and the fraction of dead cells increased to 91.3% within 7 days. Functionalized xenogeneic granules released 29.5% of cisplatin, but synthetic CaP granules only released 1.4% of cisplatin over 28 days. The immobilized and released cisplatin retained its anti-cancer efficacy and showed dose-dependent cytostatic effects on the viability of metastatic bone tumor cells.

Bone substitutes can be rendered therapeutically active for anticancer efficacy by functionalization with cisplatin. As such, our data suggest that multi-functional PMMA-based cements and cisplatin-loaded granules represent viable treatment options for filling bone defects after bone tumor resection.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation.

Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA.

Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3).

Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2022
Lombardo MDM Mangiavini L Peretti GM
Full Access

Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI).

Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and restoration of the anatomical and mechanical properties of the native meniscus. The new technological advances in recent years, such as 3D bioprinting and mesenchymal stem cells management will probably lead to an acceleration in the design, development, and validation of new and effective meniscal substitutes.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 52 - 52
1 Oct 2022
Müller N Trampuz A Gonzalez-Moreno M
Full Access

Aim. The rise of multidrug-resistant bacteria and the decreasing efficacy of antibiotic therapy in successfully treating biofilm-associated infections are prompting the exploration of alternative treatment options. This study investigates the efficacy of different bioactive glass (BAG) formulations - alone or combined with vancomycin - to eradicate biofilm. Further, we study the influence of BAG on pH and osmotic pressure as important factors limiting bacterial growth. Method. Different BAG-S53P4 formulations were used for this study, including (a) BAG-powder (<45 μm), (b) BAG-granules (500–800 μm), (c) a cone-shaped BAG-scaffold and (d) two kinds of BAG-putty containing granules, with no powder (putty-A) or with additional powder (putty-B), and a synthetic binder. Inert glass beads were included as control. All formulations were tested in a concentration of 1750 g/ml in Müller-Hinton-Broth. Targeted bacteria included methicillin-resistant Staphylococcus aureus (MRSA) and epidermidis (MRSE). Vancomycin was tested at the minimum-inhibitory-concentration for each strain (1 µg/ml for MRSA; 2 μg/ml for MRSE). To investigate the antibiofilm effect of BAG alone or combined with vancomycin, 3 hour-old MRSA or MRSE biofilms were formed on porous glass beads and exposed to BAG ± vancomycin for 24h, 72h and 168h. After co-incubation, biofilm-beads were deep-washed in phosphate-buffered saline and placed in glass vials containing fresh medium. Recovering biofilm bacteria were detected by measuring growth-related heat production at 37°C for 24h by isothermal microcalorimetry. Changes in pH and osmotic pressure over time were assessed after co-incubation of each BAG formulation in Müller-Hinton-Broth for 0h, 24h, 72h and 168h. Results. All BAG formulations showed antibiofilm activity against MRSA and MRSE in a time-dependent manner, where longer incubation times revealed higher antibiofilm activity. BAG-powder and BAG-putty-B were the most effective formulations suppressing biofilm, followed by BAG-granules, BAG-scaffold and finally BAG-putty-A. The addition of vancomycin had no substantial impact on biofilm suppression. An increase in pH and osmotic pressure over time could be observed for all BAG formulations. BAG-powder reached the highest pH value of 12.5, whereas BAG-putty-A resulted in the lowest pH of 9. Both BAG-putty formulations displayed the greatest increase on osmotic pressure. Conclusions. BAG-S53P4 has demonstrated efficient biofilm suppression against MRSA and MRSE, especially in powder-containing formulations. Our data indicates no additional antibiofilm improvement with addition of vancomycin. Moreover, high pH appears to have a larger antimicrobial impact than high osmolarity. Acknowledgements. This work was supported by PRO-IMPLANT Foundation (Berlin, Germany). The tested materials were provided by Bonalive Biomaterials Ltd (Turku, Finland)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 5 - 5
1 Oct 2022
Williams R Snuggs J Schmitz TC Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Objectives

Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated.

Methodology

Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 77 - 77
1 Nov 2021
Ambrosio L
Full Access

Minimally invasive surgery for the restoration of bone tissues lost due to diseases and trauma is preferred by the health care system as the related costs are continuously increasing. Recently, efforts have been paid to optimize injectable calcium phosphate (CaP) cements which have been recognized as excellent alloplastic material for osseous augmentation because of their unique combination of osteoconductivity, biocompatibility and mouldability. The sol-gel synthesis approach appears to be the most suitable route towards performing injectable calcium phosphates. Different strategies used to prepare bioactive and osteoinductive injectable CaP are reported. CaP gels complexed with phosphoserine-tethered poly(ε-lysine) dendrons (G3-K PS) designed to interact with the ceramic phase and able to induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) is discussed. Recently, attention has been given to the modification of hydroxyapatite with Strontium (Sr) due to its dual mode of action, simultaneously increasing bone formation (stimulating osteoblast differentiation) while decreasing bone resorption (inhibiting osteoclast differentiation). The effect of systems based on strontium modified hydroxyapatite (Sr-HA) at different composition on proliferation and osteogenic differentiation of hMSC is described. One more approach is based on the use of antimicrobial injectable materials. It has been demonstrated that some imidazolium, pyridinium and quaternary ammonium ionic liquids (IL) have antimicrobial activity against some different clinically significant bacterial and fungal pathogens. Here, we report several systems based on IL at different alkyl-chain length incorporated in Hydroxyapatite (HA) through the sol-gel process to obtain an injectable material with simultaneous opposite responses toward osteoblasts and microbial proliferation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 9 - 9
1 Nov 2021
Pandit A
Full Access

Biomaterials are no longer considered innate structures and using functionalisation and biofabrication strategies to modulate a desired response whether it is a host or implant is currently an important focus in current research paradigms. Fundamentally, a thorough understanding of the host response will enable us to design appropriate strategies. The input from the host response needs to be weighed in depending on the host disease condition. Our current inputs have been through a thorough understanding of glyco-proteomics based tools which we are developing in our laboratory. In addition, biomaterials themselves provide immense therapeutic benefits which needs to be accounted in the design paradigm. Using functionalisation strategies such as enzymatic and hyperbranched linking systems, we have been able to link biomolecules to different structural moieties. The programmed assembly of biomolecules into higher-order self-organized systems is central to innumerable biological processes and development of the next generation of scaffolds. Recent design efforts have utilized a glycobiology and developmental biology approach toward both understanding and engineering supramolecular protein and sugar assemblies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective

Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required.

Materials and Methods

The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm3 per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al2O3 and ZrO2) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression.