Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 74 - 74
14 Nov 2024
Durach A Kunisch E Renkawitz T Westhauser F Brauer D Hohenbild F
Full Access

Introduction. Bioactive glasses (BGs) promote osteogenic differentiation of bone progenitor cells by releasing therapeutically active ions. The well-described 45S5-BG (in mol%: SiO. 2. 46.13; P. 2. O. 5. 2.60; CaO 26.91; Na. 2. O 24.35) was supplemented with CaF. 2. and NaF being added to the batch at nominal 5 (F5-BG) and 25 mol% (F25-BG), respectively. While the effect on physical and chemical properties has already been characterized, the biological properties require further studies. This study investigates the effects of fluoride-supplemented BGs on the osteogenic and angiogenic properties of human bone marrow mesenchymal stromal cells (BMSCs) in vitro. Method. BMSCs were co-cultured with melt-derived 45S5-BG, F5-BG, or F25-BG in ascending concentrations (1, 2 and 3 mg/ml). At 7 days, cell number was determined by 4,6-diamidine-2-phenylindole (DAPI) staining and cell viability by fluorescein diacetate (FDA) assay. The osteogenic potential of the BGs was evaluated through alkaline phosphatase (ALP) gene expression and activity, along with bone morphogenetic protein-2 (BMP2) gene expression and protein concentration. Vascular endothelial growth factor (VEGF) gene expression and protein concentration assessed angiogenic potential. As control, BMSCs were cultured without BG exposure. Result. All BGs significantly promoted cell number and viability, with F25-BG showing the highest count at 3 mg/ml. Osteogenic markers showed a significant decrease in ALP gene expression and activity, especially at higher concentrations. All BG groups demonstrated increased BMP2 protein concentration and gene expression compared to the control, with higher BG and fluoride concentrations correlating with greater increases in BMP2. VEGF gene expression increased in all analysed BGs. The fluoride-free BG group had the highest VEGF protein concentrations, while the F25 BG group showed the highest VEGF gene expression. Conclusion. The fluoride-substituted BGs exhibit excellent cytocompatibility, enhance BMSC proliferation and positively affect BMP2 gene expression and levels, suggesting their potential for osteogenic differentiation. Further research is necessary to assess their proangiogenic effect and potential advantages over 45S5-BG


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims. This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. Methods. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process. Results. Mean callus volume was larger in the elastic fixation group (1,755 mm. 3. (standard error of the mean (SEM) 297)) than in the stiff fixation group (258 mm. 3. (SEM 65)). Pathological observation found that the expression levels of osterix (OSX), collagen, type I, alpha 1 (COL1α1), and alkaline phosphatase (ALP) in the callus of the elastic fixation group were higher than those of the stiff fixation group. The protein sequence of the callus revealed 199 DEPs, 124 of which were highly expressed in the elastic fixation group. In the in vitro study, it was observed that a stress of 200 g led to upregulation of thrombospondin 1 (THBS1) and osteoglycin (OGN) expression in bone marrow mesenchymal stem cells (BMSCs). Additionally, these genes were found to be upregulated during the osteogenic differentiation process of the BMSCs. Conclusion. Elastic fixation can promote fracture healing and osteoblast differentiation in callus, and the ability of elastic fixation to promote osteogenic differentiation of BMSCs may be achieved by upregulating genes such as THBS1 and OGN. Cite this article: Bone Joint Res 2024;13(10):559–572


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 89 - 89
2 Jan 2024
Gao Y Wu X Zhang Z Xu J
Full Access

Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and promotes tissue fibrosis, severely compromising the efficacy of stem cell therapy. Small molecule inhibitors of TGF-β1 can be used to ameliorate the osteogenic disorders caused by high concentrations of TGF-β1, but systemic inhibition of TGF-β1 function will cause strong adverse effects. How to find safe and reliable molecular targets to antagonize TGF-β1 remains to be elucidated. Orphan nuclear receptor Nr4a1, an endogenous inhibitory molecule of TGF-β1, suppresses tissue fibrosis, but its role in BMSC osteogenesis is unclear. We found that TGF-β1 inhibited Nr4a1 expression through HDAC4. Overexpression of Nr4a1 in BMSCs reversed osteogenic differentiation inhibited by high levels of TGF- β1. Mechanistically, RNA sequencing showed that Nr4a1 activated the ECM-receptor interaction and Hippo signaling pathway, which in turn promoted BMSC osteogenesis. In bone defect repair and fracture healing models, transplantation of Nr4a1-overexpressing BMSCs into C57BL/6J mice or treatment with the Nr4a1 agonist Csn-B significantly ameliorated inflammation-induced bone regeneration disorders. In summary, our findings confirm the endogenous inhibitory effect of Nr4a1 on TGF- β1 and uncover the effectiveness of Nr4a1 agonists as a therapeutic tool to improve bone regeneration, which provides a new solution strategy for the treatment of clinical bone defects and inflammatory skeletal diseases


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 121 - 121
2 Jan 2024
Tilotta V Di Giacomo G Cicione C Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Invertebral disc degeneration (IDD) is a degenerative disease involving a variety of musculoskeletal and spinal disorders such as lower back pain (LBP). Secretome derived from mesenchymal stem cells (MSCs) have exerted beneficial effect on tissue regeneration. In this study, the goal was to investigate the paracrine and the anti-inflammatory effects of secretome from interleukin IL1β preconditioned Bone Marrow MSCs (BMSCs) on human nucleus pulposus cells (hNPCs) in a 3D in vitro model. Secretome was collected from BMSCs (BMSCs-sec) after preconditioning with 10 ng/mL IL1β. hNPCs were isolated from surgical specimens, culture expanded in vitro, encapsulated in alginate beads and treated with: growth medium; IL1β 10 ng/mL; IL1β 10 ng/mL for 24 hours and then BMSCs-sec. We examined: i) cell proliferation and viability (flow cytometry), ii) nitrite production (Griess assay) and ROS quantification (Immunofluorescence) iii) glycosaminoglycan (GAG) amount (DMBB) and iv) gene expression levels of extracellular matrix (ECM) components and inflammatory mediators (qPCR). One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. In vitro tests showed an enhancement of hNPCs proliferation after treatment with BMSCs-sec (p ≤ 0.05) compared to IL1β group. After 24 hours, the percentage of dead cells was higher in IL1β treated hNPCs compared to control group and decreased significantly in combined IL1β and BMSCs-sec sample group (p ≤ 0.01). Nitrite and ROS production were significantly mitigated and GAGs content was improved by preconditioned BMSCs-sec (p ≤ 0.05). Furthermore, gene expression levels were modulated by BMSCs-sec treatment compared to controls. Our results supported the potential use of BMSCs' secretome as a cell-free strategy for IDD, overcoming the side effects of cell-therapy. Moreover, secretome derived from IL1β preconditioned BMSCs was able to reduce hNPCs death, attenuate ECM degradation and oxidative stress counteracting IDD progression. Acknowledgements: Financial support was received from the “iPSpine” and “RESPINE” Horizon 2020 projects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 42 - 42
17 Nov 2023
Prabhakaran V Sobrattee A Melchels FP Paxton JZ
Full Access

Abstract. Objectives. The enthesis is a specialised structure at the interface between bone and tendon with gradual integration to maintain functionality and integrity. In the process of fabricating an in-vitro model of this complex structure, this study aims to investigate growth and maturation of bone, tendon and BMSC spheroids followed by 3D mini-tissue production. Methods. Cell spheroids Spheroids of differentiated rat osteoblasts (dRObs), rat tendon fibroblasts (RTFs) and bone marrow stem cells (BMSC) were generated by culturing in 96 well U bottom cell repellent plates. With dROb spheroids previously analysed [1], RTF spheroids were examined over a duration of up to 28 days at different seeding densities 1×10. 4. , 5×10. 4. , 1×10. 5. , 2×10. 5. in different media conditions with and without FBS (N=3). Spheroid diameter was analysed by imageJ/Fiji; Cell proliferation and viability was assessed by trypan blue staining after dissociating with accutase + type II collagenase mix; necrotic core by H&E staining; and extracellular matrix by picro-sirius red (RTFs) staining to visualise collagen fibres under bright-field and polarised light microscope. 3D mini-tissue constructs. 15 day old mineralised dROb spheroids (∼1.5mm diameter) were deposited in pillar array supports using a customised spheroid deposition system to allow 3D mini-tissue formation via fusion (N=3). Similarly BMSC and RTF spheroids were deposited after determining the seeding density that produced spheroid size equivalent to 15 day old dROb spheroids. Gentle removal of spheroids from supports was performed on day 2, 4 and 6 to assess spheroid fusion. Histological staining was performed to observe cellular arrangement and extracellular matrix. Results. RTF spheroids diameter reduced over the course of 28 days regardless of the seeding density. A substantial decline in cell numbers over time was observed and suggests lack of cell proliferation due to tenogenic differentiation. Absence of a necrotic core in RTF spheroids, in all seeding densities, reveals their inherent capacity to maintain cell viability in avascular conditions. Picro-sirius red staining demonstrated the presence of collagen type I fibres predominantly in peripheral regions of spheroids maintaining its shape. Small amounts of collagen type III were also noticed. The dROb spheroids fused rapidly within 2 days resulting in the formation of a mini-tissue. 2×10. 5. RTFs and 3×10. 5. BMSCs produced spheroids of ∼1.5mm on day 3 and day 1 respectively. When these spheroids were deposited in pillar array supports, they did not undergo fusion even up to 6 days. This suggests inadequate aggregation of spheroids and insufficient ECM production at this early stage. Conclusions. This study has demonstrated the ability of RTFs to produce necrotic core-free spheroids with collagen fibres maintaining their structural integrity. For mini-tissue formation, we predict a longer initial culture time of RTF and BMSC spheroids will allow increased cellular interaction and ECM production before deposition, and will facilitate spheroid fusion. These findings will be applied in producing heterogenous mini-tissues, serving as a 3D in-vitro enthesis model. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 42 - 42
11 Apr 2023
Hanetseder D Hruschka V Redl H Presen D
Full Access

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate damaged tissues in response to injury, such as fracture or other tissue injury. Bone marrow and adipose tissue are the major sources of MSCs. Previous studies suggested that the regenerative activity of stem cells can be enhanced by exposure to tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells-derived mesenchymal-like progenitors (hiPSCs-MPs) can enhance the regenerative potential of human bone marrow mesenchymal stromal cells (hBMSCs). ECM was engineered from hiPSC-MPs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. hBMSCs were cultured on the engineered ECM, and differentiated into osteogenic, chondrogenic and adipogenic lineages. Growth and differentiation responses were compared to tissue culture plastic controls. Decellularization of ECM resulted in efficient cell elimination, as observed in our previous studies. Cultivation hBMSCs on the ECM in osteogenic medium significantly increased hBMSC growth, collagen deposition and alkaline phosphatase activity. Furthermore, expression of osteogenic genes and matrix mineralization were significantly higher compared to plastic controls. Chondrogenic micromass culture on the ECM significantly increased cell growth and expression of chondrogenic markers, including glycosaminoglycans and collagen type II. Adipogenic differentiation of hBMSCs on the ECM resulted in significantly increased hBMSC growth, but significantly reduced lipid vacuole deposition compared to plastic controls. Together, our studies suggest that BMSCs differentiation into osteogenic and chondrogenic lineages can be enhanced, whereas adipogenic activity is decreased by the culture on engineered ECM. Contribution of specific matrix components and underlying mechanisms need to be further elucidated. Our studies suggest that the three-lineage differentiation of aged BMSCs can be modulated by culture on hiPSC-engineered ECM. Further studies are aimed at scaling-up to three-dimensional ECM constructs for osteochondral tissue regeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 45 - 45
11 Apr 2023
Hanetseder D Hruschka V Redl H Marolt Presen D
Full Access

Regeneration of bone defects in elderly patients is limited due to the decreased function of bone forming cells and compromised tissue physiology. Previous studies suggested that the regenerative activity of stem cells from aged tissues can be enhanced by exposure to young systemic and tissue microenvironments. The aim of our project was to investigate whether extracellular matrix (ECM) engineered from human induced pluripotent stem cells (hiPSCs) can enhance the bone regeneration potential of aged human bone marrow stromal cells (hBMSCs). ECM was engineered from hiPSC-derived mesenchymal-like progenitors (hiPSC-MPs), as well as young (<30 years) and aged (>70 years) hBMSCs. ECM structure and composition were characterized before and after decellularization using immunofluorescence and biochemical assays. Three hBMSCs of different ages were cultured on engineered ECMs. Growth and differentiation responses were compared to tissue culture plastic, as well as to collagen and fibronectin coated plates. Decellularized ECMs contained collagens type I and IV, fibronectin, laminin and < 5% residual DNA, suggesting efficient cell elimination. Cultivation of young and aged hBMSCs on the hiPSC-ECM in osteogenic medium significantly increased hBMSC growth and markers of osteogenesis, including collagen deposition, alkaline phosphatase activity, bone sialoprotein expression and matrix mineralization compared to plastic controls and single protein substrates. In aged BMSCs, matrix mineralization was only detected in ECM cultures in osteogenic medium. Comparison of ECMs engineered from hiPSC-MPs and hBMSCs of different ages suggested similar structure, composition and potential to enhance osteogenic responses in aged BMSCs. Engineered ECM induced a higher osteogenic response compared to specific matrix components. Our studies suggest that aged BMSCs osteogenic activity can be enhanced by culture on engineered ECM. hiPSCs represent a scalable cell source, and tissue engineering strategies employing engineered ECM materials could potentially enhance bone regeneration in elderly patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 30 - 30
4 Apr 2023
Neunaber C Long Y Noack S Krettek C Bundkirchen K
Full Access

Due to their immunomodulatory and regenerative capacity, human bone marrow-derived mesenchymal stromal cells (hBMSCs) are promising in the treatment of polytrauma patients. However, few studies evaluated the effects of sera from polytraumatized patients on hBMSCs. The aim of this study was to explore changes in hBMSCs exposed to serum from polytrauma patients from different time points after trauma. Sera from 84 patients on day 1 (D1), 5 (D5) and 10 (D10) after polytrauma (ISS ≥ 16) were pooled respectively to test the differential influence on hBMSC. As a control, sera from three healthy age- and gender-matched donors (HS) were collected. The pooled sera were analyzed by Multicytokine Array for pro-/anti-inflammatory cytokines. For the cell culture experiments, hBMSCs from four healthy donors were used. The influence of the different sera on hBMSC regarding cell proliferation, colony forming unit-fibroblast (CFU-F) assay, cell viability and toxicity, cell migration, as well as osteogenic and chondrogenic differentiation was analyzed. One-Way-ANOVA and LSD-test were used for the parametric, Kruskal-Wallis-test for non-parametric data. p≤0.05 was considered as statistically significant. The results showed that D5 serum reduced hBMSCs cell proliferation capacity by 41.26% (p=0.000) compared with HS and increased the proportion of dead cells by 3.19% (p=0.008) and 2.25% (p=0.020) compared with D1 and D10. The frequency of CFU-F was reduced by 49.08% (p=0.041) in D5 and 53.99% (p=0.027) in D10 compared with HS, whereas the other parameters were not influenced. The serological effect of polytrauma on hBMSCs was related to the time after trauma. It is disadvantageous to use BMSCs in polytraumatized patients five days after the incidence as obvious cytological changes could be found at that time point. However, it is promising to use hBMSCs to treat polytrauma after 10 days, combined with the concept of “Damage Control Orthopaedics” (DCO)


Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 9 - 21
9 Jan 2023
Lu C Ho C Chen S Liu Z Chou PP Ho M Tien Y

Aims. The effects of remnant preservation on the anterior cruciate ligament (ACL) and its relationship with the tendon graft remain unclear. We hypothesized that the co-culture of remnant cells and bone marrow stromal cells (BMSCs) decreases apoptosis and enhances the activity of the hamstring tendons and tenocytes, thus aiding ACL reconstruction. Methods. The ACL remnant, bone marrow, and hamstring tendons were surgically harvested from rabbits. The apoptosis rate, cell proliferation, and expression of types I and III collagen, transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and tenogenic genes (scleraxis (SCX), tenascin C (TNC), and tenomodulin (TNMD)) of the hamstring tendons were compared between the co-culture medium (ACL remnant cells (ACLRCs) and BMSCs co-culture) and control medium (BMSCs-only culture). We also evaluated the apoptosis, cell proliferation, migration, and gene expression of hamstring tenocytes with exposure to co-culture and control media. Results. Compared to BMSCs-only culture medium, the co-culture medium showed substantially decreased early and late apoptosis rates, attenuation of intrinsic and extrinsic apoptotic pathways, and enhanced proliferation of the hamstring tendons and tenocytes. In addition, the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes in the hamstring tendons and tenocytes significantly increased in the co-culture medium compared to that in the control medium. Conclusion. In the presence of ACLRCs and BMSCs, the hamstring tendons and tenocytes significantly attenuated apoptosis and enhanced the expression of collagen synthesis, TGF-β, VEGF, and tenogenic genes. This in vitro study suggests that the ACLRCs mixed with BMSCs could aid regeneration of the hamstring tendon graft during ACL reconstruction. Cite this article: Bone Joint Res 2023;12(1):9–21


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing. Results. SLPI improved the migration ability of BMSCs and upregulated the expression of genes related to osteogenic differentiation of BMSCs in vitro. In vivo, the SLPI group had higher histological scores at the tendon-bone interface by histological evaluation. Micro-CT showed more new bone formation and bone ingrowth around the grafted tendon in the SLPI group. Evaluation of the healing strength of the tendon-bone connection showed that the SLPI group had a higher maximum failure force and stiffness. Conclusion. SLPI can effectively promote early tendon-to-bone healing after ACL reconstruction via enhancing the migration and osteogenic differentiation of BMSCs. Cite this article: Bone Joint Res 2022;11(7):503–512


Bone & Joint Research
Vol. 11, Issue 6 | Pages 386 - 397
22 Jun 2022
Zhu D Fang H Yu H Liu P Yang Q Luo P Zhang C Gao Y Chen Y

Aims. Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. Methods. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay. Results. miR-19a-3p was identified as one of the key regulators in the osteogenic differentiation of BMSCs, and was found to be downregulated in the alcohol-fed mouse model of fracture healing. In vitro, miR-19a-3p expression was downregulated after ethanol administration in both BMSCs and HUVECs. Vascularization and osteogenic differentiation were independently suppressed by ethanol and reversed by miR-19a-3p. In addition, the luciferase reporter assay showed that FOXF2 is the direct binding target of miR-19a-3p. In vivo, miR-19a-3p agomir stimulated callus transformation and improved the alcohol-impaired fracture healing. Conclusion. This study is the first to demonstrate that the miR-19a-3p/FOXF2 axis has a pivotal role in alcohol-impaired fracture healing, and may be a potential therapeutic target. Cite this article: Bone Joint Res 2022;11(6):386–397


Aims. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. Methods. A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively. Results. miR-136-5p promoted fracture healing and osteoblast proliferation and differentiation. BMSC-derived exosomes exhibited an enriched miR-136-5p level, and were internalized by MC3T3-E1 cells. LRP4 was identified as a downstream target gene of miR-136-5p. Moreover, miR-136-5p or exosomes isolated from BMSCs (BMSC-Exos) containing miR-136-5p activated the Wnt/β-catenin pathway through the inhibition of LRP4 expression. Furthermore, BMSC-derived exosomes carrying miR-136-5p promoted osteoblast proliferation and differentiation, thereby promoting fracture healing. Conclusion. BMSC-derived exosomes carrying miR-136-5p inhibited LRP4 and activated the Wnt/β-catenin pathway, thus facilitating fracture healing. Cite this article: Bone Joint Res 2021;10(12):744–758