In metal-on-metal (MoM) hip arthroplasties and resurfacings, mechanically induced corrosion can lead to elevated serum metal ions, a local inflammatory response, and formation of pseudotumours, ultimately requiring revision. The size and diametral clearance of anatomical (ADM) and modular (MDM) dual-mobility polyethylene bearings match those of Birmingham hip MoM components. If the acetabular component is satisfactorily positioned, well integrated into the bone, and has no surface damage, this presents the opportunity for revision with exchange of the metal head for ADM/MDM polyethylene bearings without removal of the acetabular component. Between 2012 and 2020, across two centres, 94 patients underwent revision of Birmingham MoM hip arthroplasties or resurfacings. Mean age was 65.5 years (33 to 87). In 53 patients (56.4%), the acetabular component was retained and dual-mobility bearings were used (DM); in 41 (43.6%) the acetabulum was revised (AR). Patients underwent follow-up of minimum two-years (mean 4.6 (2.1 to 8.5) years).Aims
Methods
In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40
Polyimide (MP-1, MMATech, Haifa, Israel), is a high performance aerospace thermoplastic used for its lubricity, stability, inertness and radiation resistance. A wear resistant thin robust bearing is needed for total hip arthroplasty (THR). After independent laboratory testing, in 2006, the author used the material as a bearing in two Reflection (Smith and Nephew, USA) hip surgeries. The first, a revision for polyethylene wear, survives with no evidence of wear, noise, new osteolysis or complications related to the MP-1 bearing after 16 yrs. The second donated his asymptomatic MP-1 hip at 6.5yrs for post-mortem examination. There were no osteoclasts, cellular reaction bland in contrast to that of polyethylene. In 2013 a clinical study with ethical committee approval was started using a
To achieve the functional benefits of the direct anterior (DA) approach and the fixation benefits of cemented replacement, this study combined the two techniques posing the following questions: does the limited access of the DA approach adversely affect the cement technique?; and does such a cementing technique reduce the incidence of cementless complications? A consecutive series of 341 patients (360 hips) receiving the DA approach between 2016 and 2018 were reviewed. There were 203 cementless stems and 157 cemented stems. Mean age was 75 years (70 to 86) in the cementless group and 76 years (52 to 94) in the cemented group, with 239 (70%) females in the whole series. Femoral complications were compared between the two groups. Mean follow-up was 1.5 years (0.1 to 4.4) for patients in the cementless group and 1.3 years (0.0 to 3.9) for patients in the cemented group.Aims
Methods
The purpose of this study is to examine six types of bearing surfaces implanted at a single institution over three decades to determine whether the reasons for revision vary among the groups and how long it takes to identify differences in survival. We considered six cohorts that included a total of 1,707 primary hips done between 1982 and 2010. These included 223 conventional polyethylene sterilized with γ irradiation in air (CPE-GA), 114 conventional polyethylene sterilized with gas plasma (CPE-GP), 116 crosslinked polyethylene (XLPE), 1,083 metal-on-metal (MOM), 90 ceramic-on-ceramic (COC), and 81 surface arthroplasties (SAs). With the exception of the COC, all other groups used cobalt-chromium (CoCr) femoral heads. The mean follow-up was 10 (0.008 to 35) years. Descriptive statistics with revisions per 100 component years (re/100 yr) and survival analysis with revision for any reason as the endpoint were used to compare bearing surfaces.Aims
Methods
Introduction. Lipped liners have the potential to decrease the rate of revision for instability after total hip replacement since they increase the jumping distance in the direction of the lip. However, the elevated lip also may reduce the Range of Motion and may lead to early impingement of the femoral stem on the liner. It is unclear whether the use of a lipped liner has an impact on the level of lever-out moments or the contact stresses. Therefore, the aim of the current study was to calculate these values for lipped liners and compare these results to a conventional liner geometry. Materials and Methods. 3D Finite Element studies were conducted comparing a ceramic lipped liner prototype and a ceramic conventional liner both made from
INTRODUCTION. Ceramic-on-ceramic hip resurfacing offers a bone conserving treatment for more active patients without the potential metal ion risks associated with resurfacing devices. The
INTRODUCTION. Hip resurfacing offers a more bone conserving solution than total hip replacement (THR) but currently has limited clinical indications related to some poor design concepts and metal ion related issues. Other materials are currently being investigated based on their successful clinical history in THR such as Zirconia Toughened Alumina (ZTA,
Ceramic bearings have several desirable properties, such as resistance to wear, hardness, and biocompatibility, that favour it as an articulating surface in hip arthroplasty. However, ceramic fracture remains a concern. We have reviewed the contemporary literature, addressing the factors that can influence the incidence of ceramic bearing surface fracture. Cite this article:
INTRODUCTION. There is great potential for the use of computational tools within the design and test cycle for joint replacement devices. The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment. The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions. METHODS. A series of models of a 36mm
Introduction. The bearing surfaces of ceramic-on-ceramic (CoC) total hip replacements (THR) show a substantially lower wear rate than metal-on-polyethylene (MoP) THR in-vitro. However, revision rates for CoC THR are comparable with MoP. Our hypothesis that an explanation could be adverse reaction to metal debris (ARMD) from the trunnion led us to investigate the wear at both the bearing surfaces and the taper-trunnion interface of a contemporary CoC THR in an in-vitro study. Methods. Three 36mm CoC hips were tested in a hip simulator for 5 million cycles (Mc).
We aimed to demonstrate the clinical safety of a novel anatomic cementless ceramic hip resurfacing device. Concerns around the safety of metal on metal arthroplasty have made resurfacing less attractive, while long term function continues to make the concept appealing.
Introduction and Aims. There are many surgical, implant design and patient factors that should be considered in preclinical testing of hip replacement which are not being considered in current standards. The aim of this study was to develop a preclinical testing method that consider surgical positioning, implant design and patient factors and predict the occurrence and severity of edge loading under the combination of such conditions. Then, assess the safety and reliability of the implant by predicting the wear, deformation and damage of the implant bearings under worst case conditions. Methods. Ceramic-on-ceramic (CoC, 36mm,
Hip resurfacing remains a safe and effective option according to registry data. Results in women were less reliable, in part owing to soft tissue impingement.
Aims. Ceramic-on-ceramic (CoC) bearings in total hip arthroplasty (THA)
are commonly used, but concerns exist regarding ceramic fracture.
This study aims to report the risk of revision for fracture of modern
CoC bearings and identify factors that might influence this risk,
using data from the National Joint Registry (NJR) for England, Wales, Northern
Ireland and the Isle of Man. Patients and Methods. We analysed data on 223 362 bearings from 111 681 primary CoC
THAs and 182 linked revisions for bearing fracture recorded in the
NJR. We used implant codes to identify ceramic bearing composition
and generated Kaplan-Meier estimates for implant survivorship. Logistic
regression analyses were performed for implant size and patient specific
variables to determine any associated risks for revision. Results. A total of 222 852 bearings (99.8%) were CeramTec Biolox products.
Revisions for fracture were linked to seven of 79 442 (0.009%) Biolox
Delta heads, 38 of 31 982 (0.119%) Biolox Forte heads, 101 of 80
170 (0.126%)
We conducted a prospective study of a delta ceramic total hip
arthroplasty (THA) to determine the rate of ceramic fracture, to
characterise post-operative noise, and to evaluate the mid-term
results and survivorship. Between March 2009 and March 2011, 274 patients (310 hips) underwent
cementless THA using a delta ceramic femoral head and liner. At
each follow-up, clinical and radiological outcomes were recorded.
A Kaplan-Meier analysis was undertaken to estimate survival.Aims
Patients and Methods
Background. The CoCrMo large bearings had shown a high failure rate, because of metal ion and particle release. Alumina matrix composite (AMC) ball heads have shown to mitigate such phenomena. The aim of this study was to investigate the leaching properties of AMC clinically as well as experimentally. Methods. Two patient groups were compared: a control group (n=15) without any implant (Controls) and 15 Patients with unilateral treatment with