Patients with Aims
Methods
The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks. The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds.Aims
Methods
As a proven and comprehensive molecular technique, metagenomic next-generation sequencing (mNGS) has shown its potential in the diagnosis of pathogens in patients with periprosthetic joint infection (PJI), using a single type of specimen. However, the optimal use of mNGS in the management of PJI has not been explored. In this study, we evaluated the diagnostic value of mNGS using three types of specimen with the aim of achieving a better choice of specimen for mNGS in these patients. In this prospective study, 177 specimens were collected from 59 revision arthroplasties, including periprosthetic tissues, synovial fluid, and prosthetic sonicate fluid. Each specimen was divided into two, one for mNGS and one for culture. The criteria of the Musculoskeletal Infection Society were used to define PJI (40 cases) and aseptic failure (19 cases).Aims
Methods
The diagnosis of periprosthetic joint infection (PJI) can be difficult. All current diagnostic tests have problems with accuracy and interpretation of results. Many new tests have been proposed, but there is no consensus on the place of many of these in the diagnostic pathway. Previous attempts to develop a definition of PJI have not been universally accepted and there remains no reference standard definition. This paper reports the outcome of a project developed by the European Bone and Joint Infection Society (EBJIS), and supported by the Musculoskeletal Infection Society (MSIS) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Implant-Associated Infections (ESGIAI). It comprised a comprehensive review of the literature, open discussion with Society members and conference delegates, and an expert panel assessment of the results to produce the final guidance.Aims
Methods
Of growing concern in arthroplasty is the emergence of atypical infections, particularly For this non-randomized non-blinded study, 101 adult patients scheduled for hip or knee surgery were recruited. For each, four 3 mm dermal punch biopsies were collected after administration of anaesthesia, but prior to antibiotics. Prebiopsy skin preparation consisted of a standardized preoperative 2% chlorhexidine skin cleansing protocol and an additional 70% isopropyl alcohol mechanical skin scrub immediately prior to biopsy collection. Two skin samples 10 cm apart were collected from a location approximating a standard direct anterior skin incision, and two samples 10 cm apart were collected from a lateral skin incision (suitable for posterior, direct-lateral, or anterolateral approaches). Samples were cultured for two weeks using a protocol optimized for Aims
Methods
Aims. Prosthetic joint infections (PJIs) of the hip and knee are associated with significant morbidity and socioeconomic burden. We undertook a systematic review of the current literature with the aim of proposing criteria for the selection of patients for a single-stage exchange arthroplasty in the management of a PJI. Material and Methods. A comprehensive review of the current literature was performed using the OVID-MEDLINE, EMBASE, and Cochrane Library databases and the search terms: infection and knee arthroplasty OR knee revision OR hip arthroplasty OR hip revision, and one stage OR single stage OR direct exchange. All studies involving fewer than ten patients and follow-up of less than two years in the study group were excluded as also were systematic reviews, surgical techniques, and expert opinions. Results. The initial search revealed 875 potential articles of which 22 fulfilled the inclusion and exclusion criteria. There were 16 case series and six comparative studies; five were prospective and 14 were retrospective. The studies included 962 patients who underwent single stage revision arthroplasty of an infected hip or knee joint. The rate of recurrent infection ranged from 0% to 18%, at a minimum of two years’ follow-up. The rate was lower in patients who were selected on the basis of factors relating to the patient and the local soft-tissue and bony conditions. . Conclusion. We conclude that single-stage revision is an acceptable form of surgical treatment for the management of a PJI in selected patients. The indications for this approach include the absence of severe immunocompromise and significant soft-tissue or bony compromise and concurrent acute sepsis. We suggest that a two-stage approach should be used in patients with multidrug resistant or
This multicentre, retrospective study aimed to improve our knowledge
of primary pyogenic spinal infections in children by analyzing a
large consecutive case series. The medical records of children with such an infection, treated
at four tertiary institutions between 2004 and 2014, were analyzed
retrospectively. Epidemiological, clinical, paraclinical, radiological,
and microbiological data were evaluated. There were 103 children,
of whom 79 (76.7%) were aged between six months and four years.Aims
Patients and Methods
Non-tuberculous mycobacterial infections pose a significant diagnostic and therapeutic challenge. We report two cases of such infection of the spine in HIV-negative patients who presented with deformity and neurological deficit. The histopathological features in both specimens were diagnostic of tuberculosis. The isolates were identified as
Total joint arthroplasty is the most significant advance in the treatment of end-stage arthritic disease of major joints. Despite the clinical success of this surgical procedure, however, some total joint prostheses fail, and although a failed prosthesis can be replaced, the results of revision arthroplasty are not as good as the first time. Studying the failed prosthesis and the associated bone and soft tissues provides insight into the causes of failure. Most prosthetic failures are the result of structural limitations of the implant components. Although material failure may be sudden, a much more common cause is gradual aseptic loosening of the prostheses. Aseptic loosening is caused by both mechanical (gradual loss of material by wear) and biological (osteoclastic resorption of adjacent bone) factors. Wear particles induce a foreign body reaction characterized by a pseudomembrane composed of granulomatous tissues including macrophages, fibroblasts, giant cells, and osteoclasts in addition to debris particles. The extent of this response is driven by the number, size, composition, surface area, and types of particles present. Although there are differences in the relative local toxicity of each of these particles, the end result is the same. These mechanical and biological factors are unavoidable, and the success of a total joint prosthesis depends on the rate with which they occur. Polyethylene wear particles (1–200 ?) are the primary cause of loosening. They are strongly birefringent under polarized light microscopy. Smaller particles are phagocytized by histiocytes, whereas larger particles are surrounded by foreign body giant cells. Fragmentation of PMMA may also cause particulate debris. The presence of these particles (30–100 ?) may be deduced by empty spaces into the soft tissues, often bordered by foreign body giant cells, since PMMA is dissolved by xylene during routine histological techniques. Metal oxides form on the surface of chrome-cobalt or titanium alloys due to an electrolytic process, and stresses on the surface of the metal shear the oxides into the surrounding tissues, causing a black pigmentation of the tissues. Histologically, the black deposits of oxidized metals are seen extracellularly as well as in the cytoplasm of histiocytes. In addition to oxidation, metal undergoes corrosion and, as a result, metal ions enter the soft tissues and the bloodstream. A ceramic-on-ceramic coupling generates a significantly lower amount of debris as compared to the conventional metal-on polyethylene solution. When present, ceramic debris cause a mild histiocytic reaction without giant cells and virtually no osteoclastic bone resorption. There are various secretory proteins at the interfacial membrane that can affect bone turnover, including the cytokines IL-1, IL-6, Il-10, and TNF-a. Other factors involved with bone resorption include the enzymes responsible for catabolism of the organic component of bone, such as MMPs. Prostaglandins, in particular PGE2, are also known to be important intercellular messengers in the osteolytic cascade. More recently, several mediators known to be involved in stimulation or inhibition of osteoclast differentiation and maturation, such as RANKL and osteoprotegerin, have been suggested as key factors in the development and progression of osteolysis. Infection around a prosthesis also causes loosening in approximately 1–5% of cases. Total joint prostheses become infected by two mechanisms, wound contamination at the time of surgery by Staph. aureus or Staph.epidermidis, and late hematogenous spread of organisms (Staphylo- and Streptococci, E. Coli, Pseudomonas, and anaerobes). The following factors facilitate bacterial growth. First, reaming and sawing, as well as PMMA polymerization, cause necrosis of necrotize bone adjacent to the implant, and such nonvascularized area permits bacteria to grow, safe from circulating host defenses. Second, a highly hydrated matrix of extracellular polymeric substances (biofilm) is formed that defends bacteria from antibiotics and phagocytosis. Third, some metals, such as nickel or cobalt, may depress macrophage function. The distinguishing histologic features of an infected prosthesis is an acute inflammatory reaction: a finding of >
5 PMN or of >
50 lymphocytes/hp field are presumptive for infection. Because some low-grade infections fail to stimulate an acute inflammatory reaction, they go undiagnosed until postoperative period when microbacterial culture results are available. To date, no single routinely used clinical or laboratory test has been shown to achieve ideal sensitivity and specificity for the diagnosis of prosthetic joint infection, and in most cases the diagnosis depends on a combination of clinical features, radiographic findings, and laboratory results. Intra-operative tissue cultures may be falsely negative because of prior antimicrobial exposure, a low number of organisms, inappropriate culture media, or