Advertisement for orthosearch.org.uk
Results 1 - 20 of 107
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_18 | Pages 6 - 6
1 Dec 2023
Allott N Banger M Korgaonkar J Thomas R McGregor A
Full Access

Introduction

Anterior tibial translation (ATT) is assessed in the acutely injured knee to investigate for ligamentous injury and rotational laxity. Specifically, there is a growing recognition of the significance of anterior medial rotary laxity (AMRI) as a crucial element in assessing knee stability. Anterior cruciate ligament (ACL) injuries are often accompanied with medial collateral ligament (MCL) damage. It has been suggested that Deep MCL (dMCL) fibres are a primary restraint in rotational displacement. This research aims to quantify the difference in rotational laxity of patients with ACL and MCL injuries to deem if the Feagin-Thomas test can robustly capture metrics of AMRI. 2.

Methods

AMRI was assessed using the Feagin-Thomas test in 7 isolated ACL (iACL) injured participants, 3 combined ACL and superficial fibre MCL (sMCL) injuries, 5 combined ACL and deep fibre MCL injuries, and 21 healthy controls. Displacement values were recorded using an optical motion capture (OMC) system and bespoke processing pipeline which map and model the knee's anterior displacement values relative to the medial compartment. Since absolute values (mm) of rotational laxity vary dependant on the person, values were recorded as a proportion of the rotational laxity obtained from the subject's contralateral leg. Values were compared between each patient group using an ANOVA test and Tukey's honesty significant difference post hoc test. 3.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 2 - 2
17 Apr 2023
Miller B Hornestam J Carsen S Benoit D
Full Access

To investigate changes in quadriceps and hamstrings muscle groups during sustained isokinetic knee flexion and extension.

125 paediatric participants (45 males and 80 females, mean age 14.2 years) were divided into two groups: participants with a confirmed ACL tear (ACLi, n = 64), and puberty- and activity-level matched control participants with no prior history of knee injuries (CON, n = 61). Participants completed a series of 44 repetitions of isokinetic knee flexion and extension at 90 deg/ sec using a Biodex dynamometer (Biodex Medical Systems Inc, Shirley, New York). Surface EMG sensors (Delsys Incorporated, Natick, MA) simultaneously recorded the quadriceps and hamstring activations. Muscle function was assessed as the change in quadriceps activation and extension torque were calculated using the percent difference between the mean of the first five trials, and the mean of the last five trials.

ACLi participants had significantly higher percent change in quadriceps activation for both healthy and injured legs, in comparison to CON dominant leg. As such, the healthy leg of the ACLi participants is activating significantly more than their health matched controls, while also demonstrating reduced muscular endurance (less torque in later repetitions). Therefore, we conclude that the non-injured limb of the ACLi participant is not performing as a healthy limb. Since return to activity clearance following ACLi implies return to sport against age- and activity matched opponents, clearing young athletes based on the non-injured contralateral limb may put them at greater risk of reinjury.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 16 - 16
17 Apr 2023
Hornestam J Miller B Carsen S Benoit D
Full Access

To investigate differences in the drop vertical jump height in female adolescents with an ACL injury and healthy controls and the contribution of each limb in this task. Forty female adolescents with an ACL injury (ACLi, 15.2 ± 1.4 yrs, 164.6 ± 6.0 cm, 63.1 ± 10.0 kg) and thirty-nine uninjured (CON, 13.2 ± 1.7 yrs, 161.7 ± 8.0 cm, 50.6 ± 11.0 kg) were included in this study. A 10-camera infrared motion analysis system (Vicon, Nexus, Oxford, UK) tracked pelvis, thigh, shank, and foot kinematics at 200Hz, while the participants performed 3 trials of double-legged drop vertical jumps (DVJ) on two force plates (Bertec Corp., Columbus, USA) sampled at 2000Hz.The maximum jump height normalised by dominant leg length was compared between groups using independent samples t-test. The maximum vertical ground reaction force (GRFz) and sagittal ankle, knee and hip velocities before take-off were compared between limbs in both groups, using paired samples t-test. The normalised jump height was 11% lower in the ACLi than in the CON (MD=0.04 cm, p=0.020). In the ACLi, the maximum GRFz (MD=46.17N) and the maximum velocities of ankle plantar flexion (MD=79.83°/s), knee extension (MD=85.80°/s), and hip extension (MD=36.08°/s) were greater in the non-injured limb, compared to the injured limb. No differences between limbs were found in the CON.

ACL injured female adolescents jump lower than the healthy controls and have greater contribution of their non-injured limb, compared to their injured limb, in the DVJ task. Clinicians should investigate differences in the contribution between limbs during double-legged drop vertical jump when assessing patients with an ACL injury, as this could help identify asymmetries, and potentially improve treatment, criteria used to clear athletes to sport, and re-injury prevention.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 17 - 17
17 Apr 2023
Hornestam J Miller B Del Bel M Romanchuk N Carsen S Benoit D
Full Access

To investigate if the countermovement jump height differs between ACL injured and uninjured female adolescents and to explore kinematic differences between limbs. Additionally, the association between isometric knee extension strength and jump height was investigated.

Thirty-one ACL injured female adolescents (ACLi, 15.3 ± 1.4yrs, 163.9 ± 6.6cm, 63.0 ± 9.3kg) and thirty-eight uninjured (CON, 13.2±1.7yrs, 161.7 ± 8.1cm, 50.6 ± 11.1kg) participated in this study. All participants performed a countermovement jump task, with 3D kinematics collected using a motion analysis system (Vicon, Nexus, Oxford, UK) at 200Hz, and a maximum isometric knee extension task on an isokinetic dynamometer (Biodex Medical Systems, New York, USA) for three trials. The peak torque was extracted from the isometric trials. Independent samples t-test compared the maximum jump height normalised by the dominant leg length between groups, paired samples t-test compared the maximum hip and knee extension and ankle plantar flexion velocities before take-off between limbs in both groups, and a Pearson's correlation test investigated the association between the isometric knee extension strength and jump height.

The ACLi jumped 13% lower compared to the CON (p=0.022). In the ACLi, the maximum hip and knee extension and ankle plantar flexion velocities were greater in the non-injured limb, compared to the injured limb; however, no differences between limbs were found in the CON. The isometric knee extension strength of both limbs was positively correlated with jump height (limb 1: r=0.329; p=0.006, and limb 2: r=0.386; p=0.001; whereas limb 1 corresponds to the ACLi injured limb and CON non-dominant limb, and limb 2 to the ACLi non-injured limb and CON dominant limb).

ACL injured female adolescents present lower jump height than controls and greater contribution of their non-injured limb, compared to their injured limb, during a countermovement jump task. Also, current results indicate that jump height is positively related to isometric knee extension strength measure.


Bone & Joint 360
Vol. 12, Issue 2 | Pages 39 - 42
1 Apr 2023

The April 2023 Children’s orthopaedics Roundup360 looks at: Can you treat type IIA supracondylar humerus fractures conservatively?; Bone bruising and anterior cruciate ligament injury in paediatrics; Participation and motor abilities after treatment with the Ponseti method; Does fellowship training help with paediatric supracondylar fractures?; Supracondylar elbow fracture management (Supra Man): a national trainee collaborative evaluation of practice; Magnetically controlled growing rods in early-onset scoliosis; Weightbearing restrictions and weight gain in children with Perthes’ disease?; Injuries and child abuse increase during the pandemic over 12,942 emergency admissions.


Aims

The aim of this study was to compare the preinjury functional scores with the postinjury preoperative score and postoperative outcome scores following anterior cruciate ligament (ACL) reconstruction surgery (ACLR).

Methods

We performed a prospective study on patients who underwent primary ACLR by a single surgeon at a single centre between October 2010 and January 2018. Preoperative preinjury scores were collected at time of first assessment after the index injury. Preoperative (pre- and post-injury), one-year, and two-year postoperative functional outcomes were assessed by using the Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score, and Tegner Activity Scale.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. Methods. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle. Results. The ACL tensile force in the intact knee was significantly affected with increasing PTS angle. Considerable differences were observed in kinematics and initial posterior femoral translation between the intact and ACLD joints as the PTS angles increased by more than 2.5° (beyond 11.4°). Additionally, a higher contact stress was detected in the peripheral posterior horn areas of the menisci with increasing PTS angle during the gait cycle. The maximum tensile force on the horn of the medial meniscus increased from 73.9 N to 172.4 N in the ACLD joint with increasing PTS angles. Conclusion. Knee joint instability and larger loading on the medial meniscus were found on the ACLD knee even at a 2.5° increase in PTS angle (larger than 11.4°). Our biomechanical findings support recent clinical evidence of a high risk of failure of ACL reconstruction with steeper PTS and the necessity of ACL reconstruction, which would prevent meniscus tear and thus the development or progression of osteoarthritis. Cite this article: Bone Joint Res 2022;11(10):739–750


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 68 - 68
1 Mar 2021
Goegele C Hoffmann B Linnartz C Konrad J Hahn J Breier A Schroepfer M Meyer M Schulze-Tanzil G
Full Access

Ligament fibroblasts must be mechanosensitive and possess sufficient adaptability to a novel mechanomilieu ensuring the permanent load capacity of the tissue. Once mechanoreceptors are activated, the fibroblasts react with a specific signal transmission (mechanotransduction), which ultimately leads to an adaption of their cytoskeletal organization and protein synthesis. However, the cellular response of anterior cruciate ligament (ACL) fibroblasts to cyclic mechanical stretching is still unclear. Hence, this study should allow a deeper understanding of the reaction profile of mechanically stretched ACL cells in two- (2D) and three-dimensional (3D) biomaterial-free and biomaterial cultures with respect to cell survival, size, orientation, migration and distribution. For the 2D approach consisting of monolayers with 6000 lapine (L) ACL cells per cm2 and for the 3D cultures using preformed LACL cell spheroids (2.5–4/cm2) with 25.000 cells per spheroid, silicone chambers were coated with geltrex and statically colonized with the LACL cells for 24 h before cyclically stretched for 48 h (14 percent uniaxial stretch). A second approach using 3D scaffold cultures was performed which were seeded dynamically for 24 h with LACL cells before cyclically stretched in a novel custom-made mechanostimulator. The scaffolds [polylactic acid (PLA) and polycaprolactone (PCL)] were functionalized with 10 percent gas fluorination and a collagen foam. Scaffolds (120 mm2) were precolonized dynamically with an LACL cell suspension (1 mio cells/mL) for 24 h before stretched for 72 h (4 percent uniaxial stretch). Cell vitality and numbers were monitored. The cytoskeleton orientation was shown by cytochemistry (F-actin) and evaluated (ImageJ). Cell proliferation, based on the DNA content was measured. Cell viability in stretched samples (2D, 3D and scaffold) remained above 90 percent. Stretching on the silicone chambers led to increased cell counts, length and significantly higher colonized areas than in unstretched controls. Higher numbers of LACL cells migrated out of the 3D spheroids under stretching conditions. In response to intermittent stretching, cells oriented in a 70 degrees' angle against the stretch direction in silicone chambers, whereas cell arrangement was more compact on the threads of the scaffolds than in unstretched cultures. In summary, stretching induced a rapid (48 h) cell and cytoskeletal alignment in 2D as well as in 3D cultures. The natural ACL is characterized by a strongly uniaxial cell and extracellular matrix organization which might be achieved in tissue engineered constructs by a suitable cyclic stretching protocol in future.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 62 - 62
1 Dec 2020
Yildirim K Beyzadeoglu T
Full Access

Background. Return to sports after anterior cruciate ligament reconstruction (ACLR) is multifactorial and rotational stability is one of the main concerns. Anterolateral ligament reconstruction (ALLR) has been recommended to enhance rotational stability. Purpose. To assess the effect of ALLR on return to sports. Study Design. Retrospective comparative cohort study;. Level of evidence: III. Methods. A total of 68 patients who underwent ACLR after acute ACL injury between 2015 and 2018 with a follow-up of at least 24 months were enrolled in the study. Patients with isolated ACLR (group ALL(-), n=41) were compared to patients with ACLR+ALLR (group ALL(+), n=27) in regard to subjective knee assessment via Tegner activity scale, Anterior Cruciate Ligament-Return to Sport after Injury (ACL-RSI) scale, Knee Documentation Committee (IKDC) form and Lysholm score. All tests were performed before the surgery, at 6 months and 24 months postoperatively. Results. Mean follow-up was 29.7±2.9 months for group ALL(-) and 31.6±3.0 for ALL(+) (p=0.587). Tegner, ACL-RSI and IKDC scores at last follow-up were significantly better in ALL(+) compared to ALL(-). There were no significant differences in isokinetic extensor strength and single-leg hop test results between the groups. 40 (97.6%) patients in ALL(-) and 27 (100%) in ALL(+) had a grade 2 or 3 pivot shift (p=0.812) preoperatively. Postoperatively, 28 (68.3%) patients in ALL(-) and 25 (92.6%) patients in ALL(+) had a negative pivot shift (p<0.001). 2 (5.9%) patients in ALL(-) and 1 (3.7%) patient in ALL(+) needed ACLR revision due to traumatic re-injury (p=0.165). There was no significant difference in the rate of return to any sports activity (87.8% in ALL(-) vs 88.9% in ALL(+); p=0.532), but ALL(+) showed a higher rate of return to the same level of sports activity (55.6%) than group ALL(-) (31.7%) (p=0.012). Conclusion. ACLR combined with ALLR provided a significantly higher rate of return to the same level sports activity than ACLR alone, probably due to enhanced rotational stability


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 59 - 59
1 Aug 2020
Alaqeel M Martineau PA Tamimi I Crapser A Tat J Schupbach J
Full Access

Several studies have highlighted the relationship between anterior cruciate (ACL) injury and knee geometry particularly tibial slope (TS). However, clinical data are inconsistent, whether the lateral or medial or slopes have a different influence on ACL injury. Our goal was to assess whether the medial, lateral slopes are associated with ACL injury and whether meniscus geometry is associated with ACL injury. In addition, we sought to determine if lateral meniscal height could serve as a simple surrogate measurement for ACL injury risk. A case-controlled study compared 68 patients with an ACL injury and 68 matched nested controls. Radiological analysis of MRI measured the anterior-posterior distance of the medial and lateral plateaus, the tibial slope of both plateaus and meniscus geometry. Groups were compared using a Mann-Whitney test and α < 0 .05. The lateral tibial plateau slope was significantly higher in the ACL injured group (6.92 degrees ±5.8) versus the control group 2.68 ±5.26 (p 0.0001). In addition, the lateral meniscal slope was significantly steeper with (ACL injuries: −1 ±4.7 versus −4.73 ±4.4 (p 0.0001) in the control group. The ACL Injured group had a significantly lower lateral meniscal height 0.76 cm ±0.09, compared to the control group that has 0.88 cm ±0.12 (p 0.0001). The Lateral meniscal height had a sensitivity of 76.47% and specificity 75% for predicting ACL injury using a cut off of. Patients with ACL-injury had significantly higher lateral tibial plateau slope. Lateral meniscus height was found to be an easy measurement to make on MRI with a high specificity for predicting ACL injury. Lateral tibial slope and meniscal Geometry can be used to identify patients with high risk of an ACL injury, that might benefit from further surgery to optimize rotational stability in high-risk patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 137 - 137
1 Jul 2020
Tynedal J Heard SM Hiemstra LA Buchko GM Kerslake S
Full Access

The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and minimally clinically important differences between the revision (M=61.1/100, SD=20.4) and primary groups (M=76.0/100, SD=18.9), (p < 0 .05). Mean two-year scores for revision patients with repair of the medial (M=59.4/100, SD=21.7) or lateral meniscus (M=59.4/100, SD=23.6), partial medial meniscectomy (M=59.7/100, SD=20), grade three or four osteoarthritis (M=55.9/100, SD=19.5), and medial femoral condyle osteoarthritis (M=59.1/100, SD=18) were lower compared with partial lateral meniscectomy (M=67.1/100, SD=19.1), grade one or two osteoarthritis (M=63.8/100, SD=18.9), and lateral femoral condyle osteoarthritis (M=62, SD=21). Revision ACL-R patients demonstrated a greater amount of meniscal and chondral pathology at the time of surgery. Two-years post-operative these patients demonstrated higher rates of graft laxity and lower ACL-QOL scores compared with the primary ACL-R group. Higher grade and medial sided osteoarthritis was associated with inferior ACL-QOL scores in revision ACL-R


Bone & Joint Research
Vol. 9, Issue 6 | Pages 258 - 267
1 Jun 2020
Yao X Zhou K Lv B Wang L Xie J Fu X Yuan J Zhang Y

Aims

Tibial plateau fractures (TPFs) are complex injuries around the knee caused by high- or low-energy trauma. In the present study, we aimed to define the distribution and frequency of TPF lines using a 3D mapping technique and analyze the rationalization of divisions employed by frequently used classifications.

Methods

In total, 759 adult patients with 766 affected knees were retrospectively reviewed. The TPF fragments on CT were multiplanar reconstructed, and virtually reduced to match a 3D model of the proximal tibia. 3D heat mapping was subsequently created by graphically superimposing all fracture lines onto a tibia template.


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 1 - 2
1 Jul 2019
Haddad FS Springer BD


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 824 - 831
1 Jul 2019
Mahmoud EE Adachi N Mawas AS Deie M Ochi M

Aim

Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model.

Materials and Methods

Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 145 - 145
1 Apr 2019
Abe S Nochi H Ito H
Full Access

INTRODUCION

Appropriate soft tissue balance is an important factor for postoperative function and long survival of total knee arthroplasty(TKA). Soft tissue balance is affected by ligament release, osteophyte removal, order of soft tissue release, cutting angle of tibial surface and rotational alignment of femoral components. The purpose of this study is to know the characteristics of soft tissue balance in ACL deficient osteoarthritis(OA) knee and warning points during procedures for TKA.

METHODS

We evaluated 139 knees, underwent TKA (NexGen LPS-Flex, fixed surface, Zimmer) by one surgeon (S.A.) for OA. All procedures were performed through a medial parapatellar approach. There were 49 ACL deficient knees. A balanced gap technique was used in 26 ACL deficient knees, and anatomical measured technique based on pre-operative CT was used in 23 ACL deficient knees. To compare flexion-extension gaps and medial- lateral balance during operations between the two techniques, we measured each using an original two paddles tensor (figure 1) at 20lb, 30lb and 40lb, for each knee at a 0 degree extension and 90 degree flexion. We measured bone gaps after removal of all osteophytes and cutting of the tibial surface, then we measured component gaps after insertion of femoral components. Statistical analysis was performed by t-test with significant difference defined as P<0.05.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 28 - 28
1 Apr 2019
Paszicsnyek T Innocenti B
Full Access

Introduction. The knowledge of the right amount of tension of the collateral ligaments in native knees is one of the hot topics to restore the normal kinematics in TKA. To guarantee stability in TKA there should be enough tension necessary but no overtensioning. In this study we could confirm that the tension of the ligaments is not more than 20–25N on each side (in total 40–50N) to achieve stability in the knee joint. Methods and materials. During an experimental activity we examined 5 cadaveric knee specimenwith intact ligaments. With the knee in full extension, a constant force was applied on the femoral bone and the displacement was measured up a plateau was reached. This test was conducted for a knee joints with intact cruciates, then we sacrificed the anterior cruciate and in a third step the posterior cruciate even to find out if there is any change in extending the joint comparing distance and tension. Results. In all cases the tension was with intact ACL and after sacrificing it not more than 20 N (18–22N) in average, after sacrificing the PCL the tension for maximum laxity was in average 24 N (22–26N). Summary. Most devices for ligament tension work with more than 80 N to balance the knee. Especially in cases with weak ligaments or asymmetric stability can occur the problem of over- or under-tensioning to balance the knee. In our study we could show, that less tension of the ligaments are enough to stabilize the knee. Conclusion. The most important point in restoring the normal kinematics in TA is preserving the soft tissue envelope. Of course there is still the need to proceed the correct cuts to secure survivorship of TKA, but there are still 20% dissatisfied patients. We think that there is a strict correlation to the soft tissue situation, even in the tension of ligaments, capsule and muscles. Proper adaption to the normal tension situation to avoid overtensioning will improve results and show the need of measurement devices to reach this aim


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 88 - 88
1 Apr 2019
Smulders K Rensch PV Wymenga A Heesterbeek P Groen B
Full Access

Background. The cruciate ligaments are important structures for biomechanical stability of the knee. For total knee arthroplasty (TKA), understanding of the exact function of the (PCL) and anterior (ACL) cruciate ligament during walking is important in the light of recent designs of bicruciate TKAs. However, studies evaluating in vivo function of the PCL during daily activities such as walking are scarce. We aimed to assess the role of the PCL during gait by measuring kinematics and kinetics of individuals with PCL deficiency and compare them with individuals with ACL deficiency and healthy young adults. Methods. Individuals with unilateral PCL deficiency (PCLD; n=9), unilateral ACL deficiency (n=10) and healthy young adults performed (n=10) 10 walk trials (5 for each leg) in which they walked over a force platform. Motion analysis (Vicon Motion Capture System) was used to calculate joint angles and internal moments around the knee, hip and ankle in the sagittal plane. Joint angles and moments of the injured knee (in PCLD and ACLD) or left knee (in HYA) were compared between groups at weight acceptance, mid-stance and push-off phases (see Fig. 1). Clinical assessment included passive knee laxity (Kneelax) for anterior (in 20–30° knee flexion) and posterior tibia translation (in 70–90° knee flexion) and Lysholm questionnaires. Results. Lysholm scores were significantly lower in PCLD and ACLD individuals compared to HYA (p's ≤ .001). PCLD subjects had more passive anterior (p = .001) and posterior tibia translation (p = .041) compared to HYA, but no significant differences were found in both directions between ACLD and HYA (p's > .10). During gait, knee angles at weight acceptance, late stance and around toe-off were not significantly different between the PCLD and HYA, and between ACLD and HYA (all p's > .06). However, the knee extension moment during mid-stance was significantly lower in the PCLD group when compared to the HYA group (p = .001; Fig. 2). Interestingly, the knee moment in the PCLD group remained positive (i.e. extension moment) throughout the stance phase, whereas HYA and ACLD groups created a substantial flexion moment around the knee at this instant. We did not observe any significant differences in hip and ankle joint angles and moments between groups. Discussion. We observed a difference in gait pattern in individuals with PCL deficiency compared to HYA, that was confined to an absence of knee flexion moments during the mid-stance phase. We hypothesize that this difference reflects a compensation strategy employed by individuals with PCL deficiency to avoid external knee (hyper)extension moments. Gait adaptations related to PCL deficiency might also have implications for design of total knee prosthesis and calls for careful evaluation of gait patterns after TKA with a specific focus on the role of the PCL. For any figures or tables, please contact the authors directly


Bone & Joint 360
Vol. 8, Issue 1 | Pages 17 - 18
1 Feb 2019


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 127 - 127
1 Nov 2018
Schulze-Tanzil G Gögele C Schwarz S Hahn J Breier A Meyer M Schröpfer M Arnold P
Full Access

Cultured primary cells have a limited life span and undergo dedifferentiation. Tissue engineering (TE) approaches require high cell numbers, but availability of human derived cells is limited and animal cells show inter-species differences. The advantages of immortalized cells are delayed senescence and phenotypic stability. The present study was undertaken to validate key properties of immortalized human anterior cruciate ligament (ACL) fibroblasts in direct comparison with non-immortalized cells from the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40 years old female donor) were either immortalized using repeated transient transfection with a simian virus SV40 plasmid or remained untreated. Both cell populations were analyzed for cell survival, DNA content, tendon marker, extracellular matrix (ECM) and cytoskeletal protein expression. Cell spheroids of both populations were seeded on scaffolds embroidered either from polylactic acid (PLA) threads alone or combined PLA- and PLA-co-caprolacton-(P(LA-CL)) threads, functionalized with fluor treatment and collagen foams. Cell survival on the scaffolds was monitored for up to 5 weeks. In contrast to non-immortalized ligamentocytes, immortalized cells reflected some chaotic and incomplete cell divisions, higher DNA content, numbers of dying cells and nucleoli, reduced vimentin and vinculin-associated focal adhesions. Analysed markers, other cytoskeletal and ECM components were similarly expressed. Compared to the non-immortalized ligamentocytes immortalized formed instable spheroids and died on the scaffolds after 21 d. Both cell populations reflected superior growth on the PLA-P(LA-CL) compared with PLA scaffolds. Immortalized cells share crucial properties with their non-immortalized counterparts, but TE is only possible for limited culturing periods.