Anterior tibial translation (ATT) is assessed in the acutely injured knee to investigate for ligamentous injury and rotational laxity. Specifically, there is a growing recognition of the significance of anterior medial rotary laxity (AMRI) as a crucial element in assessing knee stability. Anterior cruciate ligament (ACL) injuries are often accompanied with medial collateral ligament (MCL) damage. It has been suggested that Deep MCL (dMCL) fibres are a primary restraint in rotational displacement. This research aims to quantify the difference in rotational laxity of patients with ACL and MCL injuries to deem if the Feagin-Thomas test can robustly capture metrics of AMRI. 2. AMRI was assessed using the Feagin-Thomas test in 7 isolated ACL (iACL) injured participants, 3 combined ACL and superficial fibre MCL (sMCL) injuries, 5 combined ACL and deep fibre MCL injuries, and 21 healthy controls. Displacement values were recorded using an optical motion capture (OMC) system and bespoke processing pipeline which map and model the knee's anterior displacement values relative to the medial compartment. Since absolute values (mm) of rotational laxity vary dependant on the person, values were recorded as a proportion of the rotational laxity obtained from the subject's contralateral leg. Values were compared between each patient group using an ANOVA test and Tukey's honesty significant difference post hoc test. 3.Introduction
Methods
To investigate changes in quadriceps and hamstrings muscle groups during sustained isokinetic knee flexion and extension. 125 paediatric participants (45 males and 80 females, mean age 14.2 years) were divided into two groups: participants with a confirmed ACL tear (ACLi, n = 64), and puberty- and activity-level matched control participants with no prior history of knee injuries (CON, n = 61). Participants completed a series of 44 repetitions of isokinetic knee flexion and extension at 90 deg/ sec using a Biodex dynamometer (Biodex Medical Systems Inc, Shirley, New York). Surface EMG sensors (Delsys Incorporated, Natick, MA) simultaneously recorded the quadriceps and hamstring activations. Muscle function was assessed as the change in quadriceps activation and extension torque were calculated using the percent difference between the mean of the first five trials, and the mean of the last five trials. ACLi participants had significantly higher percent change in quadriceps activation for both healthy and injured legs, in comparison to CON dominant leg. As such, the healthy leg of the ACLi participants is activating significantly more than their health matched controls, while also demonstrating reduced muscular endurance (less torque in later repetitions). Therefore, we conclude that the non-injured limb of the ACLi participant is not performing as a healthy limb. Since return to activity clearance following ACLi implies return to sport against age- and activity matched opponents, clearing young athletes based on the non-injured contralateral limb may put them at greater risk of reinjury.
To investigate differences in the drop vertical jump height in female adolescents with an ACL injury and healthy controls and the contribution of each limb in this task.
Forty female adolescents with an ACL injury (ACLi, 15.2 ± 1.4 yrs, 164.6 ± 6.0 cm, 63.1 ± 10.0 kg) and thirty-nine uninjured (CON, 13.2 ± 1.7 yrs, 161.7 ± 8.0 cm, 50.6 ± 11.0 kg) were included in this study. A 10-camera infrared motion analysis system (Vicon, Nexus, Oxford, UK) tracked pelvis, thigh, shank, and foot kinematics at 200Hz, while the participants performed 3 trials of double-legged drop vertical jumps (DVJ) on two force plates (Bertec Corp., Columbus, USA) sampled at 2000Hz.The maximum jump height normalised by dominant leg length was compared between groups using independent samples t-test. The maximum vertical ground reaction force (GRFz) and sagittal ankle, knee and hip velocities before take-off were compared between limbs in both groups, using paired samples t-test.
The normalised jump height was 11% lower in the ACLi than in the CON (MD=0.04 cm, p=0.020). In the ACLi, the maximum GRFz (MD=46.17N) and the maximum velocities of ankle plantar flexion (MD=79.83°/s), knee extension (MD=85.80°/s), and hip extension (MD=36.08°/s) were greater in the non-injured limb, compared to the injured limb. No differences between limbs were found in the CON. ACL injured female adolescents jump lower than the healthy controls and have greater contribution of their non-injured limb, compared to their injured limb, in the DVJ task. Clinicians should investigate differences in the contribution between limbs during double-legged drop vertical jump when assessing patients with an ACL injury, as this could help identify asymmetries, and potentially improve treatment, criteria used to clear athletes to sport, and re-injury prevention.
To investigate if the countermovement jump height differs between ACL injured and uninjured female adolescents and to explore kinematic differences between limbs. Additionally, the association between isometric knee extension strength and jump height was investigated. Thirty-one ACL injured female adolescents (ACLi, 15.3 ± 1.4yrs, 163.9 ± 6.6cm, 63.0 ± 9.3kg) and thirty-eight uninjured (CON, 13.2±1.7yrs, 161.7 ± 8.1cm, 50.6 ± 11.1kg) participated in this study. All participants performed a countermovement jump task, with 3D kinematics collected using a motion analysis system (Vicon, Nexus, Oxford, UK) at 200Hz, and a maximum isometric knee extension task on an isokinetic dynamometer (Biodex Medical Systems, New York, USA) for three trials. The peak torque was extracted from the isometric trials. Independent samples t-test compared the maximum jump height normalised by the dominant leg length between groups, paired samples t-test compared the maximum hip and knee extension and ankle plantar flexion velocities before take-off between limbs in both groups, and a Pearson's correlation test investigated the association between the isometric knee extension strength and jump height. The ACLi jumped 13% lower compared to the CON (p=0.022). In the ACLi, the maximum hip and knee extension and ankle plantar flexion velocities were greater in the non-injured limb, compared to the injured limb; however, no differences between limbs were found in the CON. The isometric knee extension strength of both limbs was positively correlated with jump height (limb 1: r=0.329; p=0.006, and limb 2: r=0.386; p=0.001; whereas limb 1 corresponds to the ACLi injured limb and CON non-dominant limb, and limb 2 to the ACLi non-injured limb and CON dominant limb). ACL injured female adolescents present lower jump height than controls and greater contribution of their non-injured limb, compared to their injured limb, during a countermovement jump task. Also, current results indicate that jump height is positively related to isometric knee extension strength measure.
The April 2023 Children’s orthopaedics Roundup360 looks at: Can you treat type IIA supracondylar humerus fractures conservatively?; Bone bruising and anterior cruciate ligament injury in paediatrics; Participation and motor abilities after treatment with the Ponseti method; Does fellowship training help with paediatric supracondylar fractures?; Supracondylar elbow fracture management (Supra Man): a national trainee collaborative evaluation of practice; Magnetically controlled growing rods in early-onset scoliosis; Weightbearing restrictions and weight gain in children with Perthes’ disease?; Injuries and child abuse increase during the pandemic over 12,942 emergency admissions.
The aim of this study was to compare the preinjury functional scores with the postinjury preoperative score and postoperative outcome scores following anterior cruciate ligament (ACL) reconstruction surgery (ACLR). We performed a prospective study on patients who underwent primary ACLR by a single surgeon at a single centre between October 2010 and January 2018. Preoperative preinjury scores were collected at time of first assessment after the index injury. Preoperative (pre- and post-injury), one-year, and two-year postoperative functional outcomes were assessed by using the Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm Knee Score, and Tegner Activity Scale.Aims
Methods
To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.Aims
Methods
Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and
Ligament fibroblasts must be mechanosensitive and possess sufficient adaptability to a novel mechanomilieu ensuring the permanent load capacity of the tissue. Once mechanoreceptors are activated, the fibroblasts react with a specific signal transmission (mechanotransduction), which ultimately leads to an adaption of their cytoskeletal organization and protein synthesis. However, the cellular response of anterior cruciate ligament (ACL) fibroblasts to cyclic mechanical stretching is still unclear. Hence, this study should allow a deeper understanding of the reaction profile of mechanically stretched ACL cells in two- (2D) and three-dimensional (3D) biomaterial-free and biomaterial cultures with respect to cell survival, size, orientation, migration and distribution. For the 2D approach consisting of monolayers with 6000 lapine (L) ACL cells per cm2 and for the 3D cultures using preformed LACL cell spheroids (2.5–4/cm2) with 25.000 cells per spheroid, silicone chambers were coated with geltrex and statically colonized with the LACL cells for 24 h before cyclically stretched for 48 h (14 percent uniaxial stretch). A second approach using 3D scaffold cultures was performed which were seeded dynamically for 24 h with LACL cells before cyclically stretched in a novel custom-made mechanostimulator. The scaffolds [polylactic acid (PLA) and polycaprolactone (PCL)] were functionalized with 10 percent gas fluorination and a collagen foam. Scaffolds (120 mm2) were precolonized dynamically with an LACL cell suspension (1 mio cells/mL) for 24 h before stretched for 72 h (4 percent uniaxial stretch). Cell vitality and numbers were monitored. The cytoskeleton orientation was shown by cytochemistry (F-actin) and evaluated (ImageJ). Cell proliferation, based on the DNA content was measured. Cell viability in stretched samples (2D, 3D and scaffold) remained above 90 percent. Stretching on the silicone chambers led to increased cell counts, length and significantly higher colonized areas than in unstretched controls. Higher numbers of LACL cells migrated out of the 3D spheroids under stretching conditions. In response to intermittent stretching, cells oriented in a 70 degrees' angle against the stretch direction in silicone chambers, whereas cell arrangement was more compact on the threads of the scaffolds than in unstretched cultures. In summary, stretching induced a rapid (48 h) cell and cytoskeletal alignment in 2D as well as in 3D cultures. The natural ACL is characterized by a strongly uniaxial cell and extracellular matrix organization which might be achieved in tissue engineered constructs by a suitable cyclic stretching protocol in future.
Background. Return to sports after anterior cruciate ligament reconstruction (ACLR) is multifactorial and rotational stability is one of the main concerns. Anterolateral ligament reconstruction (ALLR) has been recommended to enhance rotational stability. Purpose. To assess the effect of ALLR on return to sports. Study Design. Retrospective comparative cohort study;. Level of evidence: III. Methods. A total of 68 patients who underwent ACLR after acute ACL injury between 2015 and 2018 with a follow-up of at least 24 months were enrolled in the study. Patients with isolated ACLR (group ALL(-), n=41) were compared to patients with ACLR+ALLR (group ALL(+), n=27) in regard to subjective knee assessment via Tegner activity scale,
Several studies have highlighted the relationship between
The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The
Tibial plateau fractures (TPFs) are complex injuries around the knee caused by high- or low-energy trauma. In the present study, we aimed to define the distribution and frequency of TPF lines using a 3D mapping technique and analyze the rationalization of divisions employed by frequently used classifications. In total, 759 adult patients with 766 affected knees were retrospectively reviewed. The TPF fragments on CT were multiplanar reconstructed, and virtually reduced to match a 3D model of the proximal tibia. 3D heat mapping was subsequently created by graphically superimposing all fracture lines onto a tibia template.Aims
Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods
Appropriate soft tissue balance is an important factor for postoperative function and long survival of total knee arthroplasty(TKA). Soft tissue balance is affected by ligament release, osteophyte removal, order of soft tissue release, cutting angle of tibial surface and rotational alignment of femoral components. The purpose of this study is to know the characteristics of soft tissue balance in ACL deficient osteoarthritis(OA) knee and warning points during procedures for TKA. We evaluated 139 knees, underwent TKA (NexGen LPS-Flex, fixed surface, Zimmer) by one surgeon (S.A.) for OA. All procedures were performed through a medial parapatellar approach. There were 49 ACL deficient knees. A balanced gap technique was used in 26 ACL deficient knees, and anatomical measured technique based on pre-operative CT was used in 23 ACL deficient knees. To compare flexion-extension gaps and medial- lateral balance during operations between the two techniques, we measured each using an original two paddles tensor (figure 1) at 20lb, 30lb and 40lb, for each knee at a 0 degree extension and 90 degree flexion. We measured bone gaps after removal of all osteophytes and cutting of the tibial surface, then we measured component gaps after insertion of femoral components. Statistical analysis was performed by t-test with significant difference defined as P<0.05.INTRODUCION
METHODS
Introduction. The knowledge of the right amount of tension of the collateral ligaments in native knees is one of the hot topics to restore the normal kinematics in TKA. To guarantee stability in TKA there should be enough tension necessary but no overtensioning. In this study we could confirm that the tension of the ligaments is not more than 20–25N on each side (in total 40–50N) to achieve stability in the knee joint. Methods and materials. During an experimental activity we examined 5 cadaveric knee specimenwith intact ligaments. With the knee in full extension, a constant force was applied on the femoral bone and the displacement was measured up a plateau was reached. This test was conducted for a knee joints with intact cruciates, then we sacrificed the
Background. The cruciate ligaments are important structures for biomechanical stability of the knee. For total knee arthroplasty (TKA), understanding of the exact function of the (PCL) and
Cultured primary cells have a limited life span and undergo dedifferentiation. Tissue engineering (TE) approaches require high cell numbers, but availability of human derived cells is limited and animal cells show inter-species differences. The advantages of immortalized cells are delayed senescence and phenotypic stability. The present study was undertaken to validate key properties of immortalized human anterior cruciate ligament (ACL) fibroblasts in direct comparison with non-immortalized cells from the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40 years old female donor) were either immortalized using repeated transient transfection with a simian virus SV40 plasmid or remained untreated. Both cell populations were analyzed for cell survival, DNA content, tendon marker, extracellular matrix (ECM) and cytoskeletal protein expression. Cell spheroids of both populations were seeded on scaffolds embroidered either from polylactic acid (PLA) threads alone or combined PLA- and PLA-co-caprolacton-(P(LA-CL)) threads, functionalized with fluor treatment and collagen foams. Cell survival on the scaffolds was monitored for up to 5 weeks. In contrast to non-immortalized ligamentocytes, immortalized cells reflected some chaotic and incomplete cell divisions, higher DNA content, numbers of dying cells and nucleoli, reduced vimentin and vinculin-associated focal adhesions. Analysed markers, other cytoskeletal and ECM components were similarly expressed. Compared to the non-immortalized ligamentocytes immortalized formed instable spheroids and died on the scaffolds after 21 d. Both cell populations reflected superior growth on the PLA-P(LA-CL) compared with PLA scaffolds. Immortalized cells share crucial properties with their non-immortalized counterparts, but TE is only possible for limited culturing periods.