Chronic pelvic discontinuity (CPD) during revision hip arthroplasty is a challenging entity to address. The aim of this study was to evaluate the clinical and radiologic outcomes, and complications of the “acetabular distraction technique” for the management of CPD during revision hip arthroplasty. Patients with CPD, who underwent acetabular revision between 2014 and 2022 at two tertiary care centres, using an identical distraction technique, were evaluated. Demographic parameters, pre-operative acetabular bone loss, duration of follow-up, clinical and radiologic outcomes, and survivorship were evaluated. In all, 46 patients with a mean follow-up of 34.4 (SD=19.6, range: 24–120) months were available for evaluation. There were 25 (54.3%) male, and 21 (45.7%) female patients, with a mean age of 58.1 (SD=10.5, range: 40–81) years at the time of revision surgery. Based on the Paprosky classification of acetabular bone loss, 19 (41.3%), 12 (26.1%), and 15 (32.6%) patients had type 3b, 3a, and 2c defects. All patients were managed using the Trabecular Metal™ Acetabular Revision System; 16 patients required additional Trabecular Metal™ augments. The mean HHS improved from 50.1 (SD=7.6, range: 34.3 – 59.8) pre-operatively, to 86.6 (SD=4.2, range: 74.8 -91.8) at the last follow-up. Two patients (4.3 %) developed partial sciatic nerve palsy, two (4.3%) had posterior dislocation, and one (2.2%) required re-revision for aseptic loosening. Radiologically, 36 (78.3%) patients showed healing of the pelvic discontinuity. The Kaplan-Meier construct survivorship was 97.78% when using re-revision for aseptic acetabular loosening as an endpoint. The
Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction.Aims
Methods
Introduction. Pelvic discontinuity is a challenging complication. One treatment option that has garnered enthusiasm is
Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84).Aims
Patients and Methods
Introduction. During revision total hip arthroplasty, successful treatment of acetabular bone loss with an associated chronic pelvic discontinuity is dependent upon the remaining bone stock, stability of the construct, potential for biologic fixation, and healing of the discontinuity. Several techniques have been described for the treatment of this clinical entity; the authors recommend the use of
Aims. The aim of this study was to examine the results of the acetabular
distraction technique in achieving implantation of a stable construct,
obtaining biological fixation, and producing healing of chronic
pelvic discontinuity at revision total hip arthroplasty. Patients and Methods. We identified 32 patients treated between 2006 and 2013 who underwent
acetabular revision for a chronic pelvic discontinuity using acetabular
distraction, and who were radiographically evaluated at a mean of
62 months (25 to 160). Of these patients, 28 (87.5%) were female.
The mean age at the time of revision was 67 years (44 to 86). The patients
represented a continuous series drawn from two institutions that
adhered to an identical operative technique. Results. Of the 32 patients, one patient required a revision for aseptic
loosening, two patients had evidence of radiographic loosening but
were not revised, and three patients had migration of the acetabular
component into a more stable configuration. Radiographically, 22
(69%) of the cohort demonstrated healing of the discontinuity. The
Kaplan–Meier construct survivorship was 83.3% when using revision
for aseptic acetabular loosening as an endpoint. At the time when
one patient failed due to aseptic loosening (at 7.4 years), there
were a total of seven patients with a follow-up of seven years or
longer who were at risk of failure. Conclusion. The
The treatment of severe acetabular bone loss is challenging, especially in the setting of an associated chronic pelvic discontinuity. There are several available treatment options for chronic pelvic discontinuity, each of which has its own disadvantages. One of the major difficulties with this entity, regardless of the reconstructive technique chosen, is the inability to obtain reproducible healing of the discontinuity. We evaluated the use of
A pelvic discontinuity occurs when the superior
and inferior parts of the hemi-pelvis are no longer connected, which
is difficult to manage when associated with a failed total hip replacement.
Chronic pelvic discontinuity is found in 0.9% to 2.1% of hip revision
cases with risk factors including severe pelvic bone loss, female
gender, prior pelvic radiation and rheumatoid arthritis. Common
treatment options include: pelvic plating with allograft, cage reconstruction,
custom triflange implants, and porous tantalum implants with modular augments.
The optimal technique is dependent upon the degree of the discontinuity,
the amount of available bone stock and the likelihood of achieving
stable healing between the two segments. A method of treating pelvic
discontinuity using porous tantalum components with a distraction
technique that achieves both initial stability and subsequent long-term
biological fixation is described. Cite this article:
Acetabular bone loss is a challenging problem
facing the revision total hip replacement surgeon. Reconstruction
of the acetabulum depends on the presence of anterosuperior and
posteroinferior pelvic column support for component fixation and
stability. The Paprosky classification is most commonly used when
determining the location and degree of acetabular bone loss. Augments
serve the function of either providing primary construct stability
or supplementary fixation. . When a pelvic discontinuity is encountered we advocate the use
of an
Stabilisation of a chronic pelvic discontinuity with a posterior column plate with or without an associated acetabular cage sometimes results in persistent micromotion across the discontinuity with late fatigue failure and component loosening. We believe that these chronic discontinuities are really chronic fracture non-unions incapable of healing.
Stabilisation of a pelvic discontinuity with a posterior column plate with or without an associated acetabular cage sometimes results in persistent micromotion across the discontinuity with late fatigue failure and component loosening.