Advertisement for orthosearch.org.uk
Results 1 - 20 of 61
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 46 - 46
1 Apr 2018
Woiczinski M Ingr K Steinbrück A Weber P Schröder C Müller PE Jansson V
Full Access

Wear is an important factor in the long term success of total knee arthroplasty. Therefore, wear testing methods and machines become a standard in research and implant development. These methods are based on two simulation concepts which are defined in standards ISO 14243-1 and 14243-3. The difference in both concepts is the control mode. One is force controlled while the other has a displacement controlled concept. The aim of this study was to compare the mechanical stresses within the different ISO concepts. Furthermore the force controlled ISO was updated in the year 2009 and should be compared with the older which was developed in 2001. A finite element model based on the different ISO standards was developed. A validation calculated with kinematic profile data of the same implant (Aesculap, Columbus CR) in an experimental wear test setup (Endolap GmbH) was done. Based on this model all three different ISO standards were calculated and analysed. Validation results showed Pearson correlation for anterior posterior movement of 0.3 and for internal external rotation 0.9. Two main pressure maximums were present in ISO 14243-1:2001 (force controlled) with 17.9 MPa and 13.5 MPa for 13 % and 48 % of the gait cycle. In contrast ISO 14243-1:2009 (force controlled) showed three pressure maximums of 18.5 MPa (13 % of gait cycle), 16.4 MPa (48 % of gait cycle) and 13.2 MPa (75 % of gait cycle). The displacement controlled ISO (14243-3:2014) showed two pressure maximums of 16.0 MPa (13 % of gait cycle) and 17.2 MPa (48 % of gait cycle). The adapted force controlled ISO of the year 2009 showed higher mechanical stress during gait cycle which also might lead to higher wear rates. The displacement controlled ISO leads to higher mechanical stress because of the constraint at the end of the stance phase of the gait cycle. Future studies should analyse different inlay designs within these ISO standards


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 50 - 50
1 Mar 2021
Okazaki Y Furumatsu T Hiranaka T Kamatsuki Y Ozaki T
Full Access

The meniscus is a fibrocartilaginous tissue that plays an important role in controlling the complex biomechanics of the knee. Many histological and mechanical studies about meniscal attachment have been carried out, and medial meniscus (MM) root repair is recommended to prevent subsequent cartilage degeneration following MM posterior root tear. However, there are only few studies about the differences between meniscus root and horn cells. The goal of this study was to clarify the differences between these two cells. Tissue samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Morphology, distribution, and proliferation of MM root and horn cells, as well as gene and protein expression levels of Sry-type HMG box (SOX) 9 and type II collagen (COL2A1) were determined after cyclic tensile strain (CTS) treatment. Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for SOX9 and COL2A1 was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following 2-h CTS (5% and 10% strain). SOX9 and COL2A1 mRNA expression levels were significantly enhanced in horn cells compared with those in root cells after 2- and 4-h CTS (5%) treatment. This study demonstrates that MM root and horn cells have distinct characteristics and show different cellular phenotypes. Our results suggest that physiological tensile strain is important for activating extracellular matrix production in horn cells. Restoring physiological mechanical stress may be useful for promoting healing of the MM posterior horn


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_8 | Pages 11 - 11
1 Jun 2015
McMenemy L Masouros S Stapley S Clasper J
Full Access

Military personnel operating on high speed marine craft are exposed to Whole-Body Vibration (WBV). Additionally planing craft operate at speeds with minimal contact of the hull with warer making the crew vulnerable to mechanical shock. An association between Low Back Pain (LBP) and exposure to WBV has been extensively reported in civilian literature. LBP is reported by military personnel operating on planing craft leading to downgrades and potential discharge. There is a clear need to understand the impact prolonged exposure has on our population operating these craft. We performed a bibliographical search of the PubMed database for records using a combination of keywords. Abstracts were screened for relevance and references cited in retrieved papers reviewed. There is no consensus in the literature on the potentially pivotal pathological process behind the association. Evidence from professional driving suggests current safe operating exposure levels require review to protect against long-term damage however with little evidence concerning the unique environment in which boats crews operate, the parity of these environments require investigation to allow direct comparison. Due to the prevalence of LBP in this population a need exists to establish the pathological process and add to the evidence base driving safe operating exposure levels.


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 78 - 78
1 Jan 2003
Pullig O Weseloh G Swoboda B
Full Access

Introduction. Mechanical loading has been hypothesized to play an important role in the development, remodeling and in diseases of many skeletal tissues, including cartilage. In order to study the metabolic response of cartilage to physical forces, in vitro systems have often been used because of the precise control with which mechanical loads can be applied. We developed a new mechanical loading system, in which we were able to load the intact femoral condyle in order to preserve the native cartilage/subchondral bone structure. This system represents a more ‚in vivo‘ situation than cartilage explants or chondrocyte cell culture systems. Our approach focused on changes in mRNA expression of type II collagen, type VI collagen, and aggrecan in loaded versus adjacent unloaded cartilage in order to analyse the early response of chondrocytes to well-defined mechanical stresses. Methods. Femoral condyles were obtained from two-year-old cows. The integrity of the cartilage surface was controlled by staining with safranin O. The femoral condyles were compressed in an Instron 8501 material testing machine. Cyclic compression pressure was applied for 2000 cycles in a sinusoidal waveform of 0. 5 Hz-frequency with a peak stress of 0. 2 to12. 5 MPa. Following loading, full depth cartilage sections were cut out and one half immediately frozen in liquid nitrogen for RNA isolation and the other half soaked in 4% paraformaldehyde for paraffin embedding. As control, the adjacent unloaded cartilage was collected and treated in the same way. Total RNA was isolated and changes in mRNA expression were quantitated by competitive quantitative PCR, using an internal standard of a C-terminal truncated version of the corresponding genes. The PCR-reactions were separated by agarose gel electrophoresis and amplified fragments quantified using video-densitometry analysis. The results were expressed as the ratio of mRNA from loaded to unloaded cartilage. Results. Cyclic compression with peak stresses of 12. 5, 6. 3, 2. 5 and 0. 6 MPa lead to a two-fold decrease in the mRNA expression of type II collagen and aggrecan and a threefold decrease of type VI collagen, in consideration of the intra-assay variability of about 30%. Compression with peak stresses of 0. 3 and 0. 2 MPa lead to a three-fold increase of the mRNA expression of type II collagen, a four-fold increase of aggrecan and a slight decrease of type VI collagen. Low compression strength leads to an increase of the mRNA expression of the major components of cartilage, type II collagen and aggrecan, whereas high loading leads to a decrease of the mRNA expression. Conclusion. The results show that our system can be used to analyze early responses of chondrocytes to well-defined mechanical stresses in an intact cartilage/bone-system and therefore will enable us to investigate the role of physiological and non-physiological high loading on the induction of cartilage degradation and regeneration in joint trauma and osteoarthritis. Since the cartilage/bone samples are incubated in medium during the experiment, this system will also offer us the opportunity to investigate additives to the medium as potential pharmacological therapeutics in osteoarthritis


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 453 - 454
1 Sep 2009
Barrios C Gòmez-Benito M Botero D García-Aznar J Doblaré M
Full Access

A recently developed parametric geometrical finite element model (p-FEM) was adapted to the specific hip geometric measurements of a group of patients with slipped capital femoral epiphysis (SCFE). The objective was to analyze the stress distribution in the growth plate of these patients and to evaluate differences for those patients who developed bilateral disease.

Different geometric parameters were measured in the healthy proximal femur of 18 adolescents (mean age, 12,1 yr) with unilateral SCFE and in 23 adolescents matched in age without hip disease (control group). Five patients developed SCFE in the contralateral side during follow-up. Different geometric measurements were taken from hip conventional X-ray studies. The p-FEM of the proximal femur permits modifications of different geometrical parameters, therefore the X-ray measurements taken from each patient were applied to the model obtaining a subject-specific model for each case. In each model, different mechanical situations such as walking, stairs climbing and sitting were simulated by applying loads on the femoral head corresponding to each own weight. The risk for growth plate failure was estimated by the Tresca, von Misses and Rankine stresses.

In summary, the models shows important differences between the stresses computed at the healthy femurs of patients with unilateral SCFE and femurs that further underwent bilateral SCFE. So, the 95% confidence interval of the percentage of volume of the growth plate subjected to stresses higher than 2MPa was almost similar for the control group and patients with unilateral SCFE. However, those patients who developed bilateral disease had statistically significant large physeal areas with more than 2.0 MPa (p< 0.005). Stresses were also strongly dependent on the geometry of the proximal femur, especially on the posterior sloping angle of the physis and the physeal sloping angle.

In spite of simplifications of the developed p-FEM, this tool has been able to show the influence of femur geometry in growth plate stresses and to predict the sites where growth plate starts to fail.


Abstract. Source of Study: London, United Kingdom. This intervention study was conducted to assess two developing protocols for quadriceps and hamstring rehabilitation: Blood Flow Restriction (BFR) and Neuromuscular Electrical Stimulation Training (NMES). BFR involves the application of an external compression cuff to the proximal thigh. In NMES training a portable electrical stimulation unit is connected to the limb via 4 electrodes. In both training modalities, following device application, a standardised set of exercises were performed by all participants. BFR and NMES have been developed to assist with rehabilitation following lower limb trauma and surgery. They offer an alternative for individuals who are unable to tolerate the high mechanical stresses associated with traditional rehabilitation programmes. The use of BFR and NMES in this study was compared across a total of 20 participants. Following allocation into one of the training programmes, the individuals completed training programmes across a 4-week period. Post-intervention outcomes were assessed using Surface Electromyography (EMG) which recorded EMG amplitude values for the following muscles: Vastus Medialis, Vastus Lateralis, Rectus Femoris and Semitendinosus. Increased Semitendinosus muscle activation was observed post intervention in both BFR and NMES training groups. Statistically significant differences between the two groups was not identified. Larger scale randomised-controlled trials are recommended to further assess for possible treatment effects in these promising training modalities


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 16 - 16
7 Nov 2023
Khumalo M
Full Access

Low back pain is the single most common cause for disability in individuals aged 45 years or younger, it carries tremendous weight in socioeconomic considerations. Degenerative aging of the structural components of the spine can be associated with genetic aspects, lifetime of tissue exposure to mechanical stress & loads and environmental factors. Mechanical consequences of the disc degenerative include loss of disc height, segment instability and increase the load on facets joints. All these can lead to degenerative changes and osteophytes that can narrow the spinal canal. Surgery is indicated in patients with spinal stenosis who have intractable pain, altered quality of life, substantially diminished functional capacity, failed non-surgical treatment and are not candidates for non-surgical treatment. The aim was to determine the reasons for refusal of surgery in patients with established degenerative lumber spine pathology eligible for surgery. All patients meeting the study criteria, patients older than 18 years, patients with both clinical and radiological established symptomatic degenerative lumbar spine pathology and patients eligible for surgery but refusing it were recruited. Questionnaire used to investigate reasons why they are refusing surgery. Results 59 were recruited, fifty-one (86.4 %) females and eight (13.6 %) males. Twenty (33.8 %) were between the age of 51 and 60 years, followed by nineteen (32.2 %) between 61 and 70 years, and fourteen (23.7 %) between 71 and 80 years. 43 (72 %) patients had lumber spondylosis complicated by lumber spine stenosis, followed by nine (15.2 %) with lumbar spine spondylolisthesis and four (6.7 %) had adjacent level disease. 28 (47.4 %) were scared of surgery, fifteen (25.4 %) claimed that they are too old for surgery and nine (15.2 %) were not ready. Findings from this study outlined that patients lack information about the spinal surgery. Patients education about spine surgery is needed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2). Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 41 - 41
1 Nov 2021
Rudelli S Rudelli M Giglio P Rudelli B
Full Access

Hip instability is one of the most common complications after total hip arthroplasty (THA). Among the possible techniques to treat and prevent hip dislocation, the use of constrained liners is a well-established option. However, there is concern regarding the longevity of these devices due to higher mechanical stress caused by limited hip motion. The primary aim of this paper is to analyze the failure rate of a specific constrained liner in a series of consecutive cases. This study is a retrospective consecutive case series of THA and revision hip arthroplasty (RHA), in which a constrained polyethylene insert was used to treat or prevent hip instability. Patients were divided in 3 different groups (THA for hip fracture, THA for osteoarthrosis, and RHA). Survival analysis was performed for failure, defined as at least one episode of hip dislocation or radiographical signs of acetabular loosening. Logistical regression was used to investigate risk factors for failure. A total of 103 patients were included in the study. Fourteen patients (13,6%) were THA for osteoarthrosis, 60 (58,3%) were THA for hip fracture, and 29(28,2%) were RHA. The median follow-up was 28 months (ranging 12 − 173 months). Failure occurred in 4 cases (3,9%) comprehending 2 dislocations (1,9%) and 2 early acetabular loosening (1,9%). Amongst the groups, there were no cases of failures in the THA due to osteoarthrosis, in the THA for hip fracture there were 3 cases (5%) and in the RHA one case (3,4%). Failure-free survival was not statistically different between groups. There were no risk factors statistically related to failure. The use of constrained acetabular insert to prevent or treat instability achieved an adequate survival time with a low rate of complications. Further studies are necessary to corroborate our findings


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 22 - 22
1 Nov 2018
Inaba Y
Full Access

Biomechanical analysis is important to evaluate the effect of orthopaedic surgeries. CT-image based finite element method (CT-FEM) is one of the most important techniques in the computational biomechanics field. We have been applied CT-FEM to evaluate resorptive bone remodeling, secondary to stress shielding, after total hip arthroplasty (THA). We compared the equivalent stress and strain energy density to postoperative BMD (bone mineral density) change in the femur after THA, and a significant correlation was observed between the rate of changes in BMD after THA and equivalent stress. For periacetabular osteotomy cases, we investigated mechanical stress in the hip joint before and after surgery. Mechanical stress in the hip joint decreased significantly after osteotomy and correlated with the degree of the acetabular coverage. For arthroscopic osteochondroplasty cases, we examined mechanical strength of the proximal femur after cam resection using CT-FEM. The results suggested that both the depth and area of the resection at the distal part of femoral head-neck junction correlated strongly with fracture risk after osteochondroplasty. This talk consists of our results of clinical application studies using CT-FEM, and importance of application of CT-FEM to biomechanical studies to assess the effect of orthopaedic surgeries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 45 - 45
1 Nov 2021
Ramirez SC Stoker A Cook J Ma R
Full Access

Introduction and Objective. Anterior cruciate ligament reconstruction (ACLR) with tendon autografts is the “gold standard” technique for surgical treatment of ACL injuries. Common tendon graft choices include patellar tendon (PT), semitendinosus/gracilis “hamstring” tendon (HT), or quadriceps tendon (QT). Healing of the graft after ACLR may be affected by graft type since the tissue is subjected to mechanical stresses during post-operative rehabilitation that play important roles in graft integration, remodeling and maturation. Abnormal mechanical loading can result in high inflammatory and degradative processes and altered extracellular matrix (ECM) synthesis and remodeling, potentially modifying tissue structure, composition, and function. Because of the importance of load and ligamentization for tendon autografts, this study was designed to compare the differential inflammatory and degradative metabolic responses to loading by three tendon types commonly used for autograft ACL reconstruction. Materials and Methods. With IRB approval (IRB # 2009879) and informed patient consent, portions of 9 QT, 7 PT and 6 HT were recovered at the time of standard of care ACLR surgeries. Tissues were minced and digested in 0.2 mg/ml collagenase solution for two hours and were then cultured in 10% FBS at 5% CO. 2. , 37°C, and 95% humidity. Once confluent, cells were plated in Collagen Type I-coated BioFlex® plates (1 × 10. 5. cells/well) and cultured for 2 days prior to the application of strain. Then, media was changed to supplemented DMEM with 2% FBS for the application of strain. Fibroblasts were subjected to continuous mechanical stimulation (2-s strain and 10-s relaxation at a 0.5 Hz frequency) at three different elongation strains (mechanical stress deprivation-0%, physiologic strain-4%, and supraphysiological strain-10%). 9. for 6 days using the Flexcell FX-4000T strain system. Media was tested for inflammatory biomarkers (PGE2, IL-8, Gro-α, and MCP-1) and degradation biomarkers (GAG content, MMP-1, MMP-2, MMP-3, TIMP-1, and TIMP-2). Significant (p<0.05) difference between graft sources were assessed with Kruskal-Wallis test and post-hoc analysis. Results are reported as median± interquartile range (IQR). Results. Differences in Inflammation-Related Biomarker Production (Figure 1): The production of PGE2 was significantly lower by HT fibroblasts compared to both QT and PT fibroblasts at all timepoints and strain levels. The production of Gro-α was significantly lower by HT fibroblasts compared to QT at all time points and strain levels, and significantly lower than PT on day 3 at 0% strain, and all strain levels on day 6. The production of IL-8 by PT fibroblasts was significantly lower than QT and HT fibroblast on day 3 at 10% strain. Differences in Degradation-Related Biomarker Production (Figure 2): The production of GAG by HT fibroblasts was significantly higher compared to both QT and PT fibroblasts on day 6 at 0% strain. The production of MMP-1 by the QT fibroblasts was significantly higher compared to HT fibroblasts on day 3 of culture at all strain levels, and in the 0% and 10% strain levels on day 6 of culture. The production of MMP-1 by the QT fibroblasts was significantly higher compared to PT fibroblasts at in the 0% and 4% strain groups on day 3 of culture. The production of TIMP-1 by the HT fibroblasts was significantly lower compared to PT fibroblasts on day 3 of culture. Conclusions. The results of this study identify potentially clinically relevant difference in the metabolic responses of tendon graft fibroblasts to strain, suggesting a lower inflammatory response by hamstring tendon fibroblasts and higher degradative response by quadriceps tendon fibroblasts. These responses may influence ACL autograft healing as well as inflammatory mediators of pain in the knee after reconstruction, which may have implications regarding graft choice and design of postoperative rehabilitation protocols for optimizing outcomes for patients undergoing ACL reconstruction. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 49 - 49
1 Jan 2016
Takeda M Yoshinori I Hideo N Junko S
Full Access

Introduction. The low-contact stress (LCS) knee prosthesis is a mobile-bearing design with modifications to the tibial component that allow for meniscal-bearing (MB) or rotating-platform (RP). The MB design had nonconstrained anteroposterior and rotational movement, and the RP design has only nonconstrained rotational movement. The anterior soft tissues, including patellar tendon (PT), prevent anterior dislocation of the MB. The PT may consistently be exposed to overstressing. Therefore, we hypothesized that the PT thickness and width in MB prosthesis revealed more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much mechanical stress of the MB movement. To confirm this hypothesis, we analyze the PT thickness and width induced by mobile-bearing inserts. Objectives. Sixty LCS prostheses in 30 patients were analyzed. The average follow-up time was 61 months. MB prosthesis was used on one side of the knee and RP prosthesis was used on the contralateral side of the knee. All patients were chosen from group with no clinical complication, and all had achieved passive full extension and at least 90°of flexion. The average Hospital for Special Surgery Score was 94.6 ± 2.7. Methods. We measured the thickness and width of PT at joint line level, which were confirmed by sagittal section using ultrasound in knee extension between MB and RP design prosthesis. Results. The mean thickness of PT was 4.7 mm (1.2) with MB and 4.7 mm (1.0) with RP design prosthesis. The mean width of PT was 30.6 mm (3.2) with MB and 31.3 mm (3.5) with RP design prosthesis. No significant differences were found between both groups. Conclusion. The current results showed that the PT thickness and width in MB prosthesis did not reveal more morphological changes than those of RP prosthesis due to degeneration of the PT induced by much mechanical stress of the MB movement. The possible reasons are the following: (1) We did not remove infra-patellar fat pad, which might play shock absorber of mechanical stress from MB, and prevent from significant degeneration of PT, (2) MB inserts did not stimulate the middle of the PT directly, unlike LCS A/P-Glide inserts, and might come into contact with the both ends of the PT and (3) MB inserts did not move so as to cause degeneration in the PT


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 19 - 19
1 May 2017
Descamps S Awitor O Raspal V Erivan R Boisgard S
Full Access

Background. Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large mechanical stresses. In order to obtain the best performance during clinical use, mechanical properties of implants need to be investigated and understood. Method. We modified the topography of commercial titanium orthopaedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterised using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and 80 cN·m. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter. Results. The fabricated nanotube layers can resist mechanical stresses close to those found in clinical situations. Conclusion. The mechanical characteristics of this surface treatment appear to be sufficiently robust to withstand realistic clinical operating conditions that our in vitro experiments were designed to simulate. These results show that the nanotube layers remain intact after the implantation process. This may allow for the exciting possibility of nanotubes being loaded with molecules. Level of Evidence. II


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_II | Pages 280 - 280
1 May 2010
Wannomae K Nabar S Muratoglu O
Full Access

Introduction: Two second generation highly crosslinked UHMWPEs have been cleared by the FDA for clinical use in the United States: sequentially crosslinked UHMWPE (X3™ UHMWPE, Stryker Inc., Mahwah, NJ, USA) and α-tocopherol stabilized UHMWPE (E-Poly™ UHMWPE, Biomet, Inc., Warsaw, IN, USA). Both have been shown to be oxidatively stable under standardized aging methods (ASTM F2003); however, these conventional aging methods did not consider the effect of mechanical loading on the oxidative behavior of the materials. By coupling the adverse effects of thermal aging and mechanical stress, we sought to investigate if either material was prone to environmental stress cracking (ESC). We hypothesize that the residual free radicals remaining in sequentially crosslinked PE will lead to oxidative degradation in this adverse test; furthermore, we hypothesized that the α-tocopherol infused in E-Poly™ will continue to protect the highly crosslinked PE even under such unfavorable conditions. Materials and Methods: Three materials were tested:. Conventional: UHMWPE gamma sterilized in inert,. SXL: sequentially irradiated and annealed UHMWPE irradiated to a cumulative dose of 100kGy (33 kGy irradiation + 8 hour annealing in air, repeated 3 times) and gas plasma sterilized, and. E-Poly: UHMWPE irradiated to 100kGy, stabilized with α-tocopherol, and gamma sterilized in inert. Four specimens from each group were subjected to a reciprocating mechanical stress of 10 MPa at a frequency of 0.5 Hz in an environmental chamber maintained at 80°C. Control samples were placed in the chamber but not subjected to cyclic mechanical stress. When a visible crack was observed on a sample’s surface or when a sample fractured, it and its corresponding control sample were analyzed by FTIR to quantify oxidation. Results: All conventional specimens, half (2 of 4) of the SXL specimens, and none of the E-Poly specimens failed prior to the completion of 1,530,000 cycles (5 weeks of testing at 0.5 Hz). Cyclic loading had an adverse effect on the oxidation of the conventional and the SXL groups; the peak oxidation levels were higher in the cyclically loaded samples as compared to the control samples removed at the same time which were not loaded, likely due to an increase in chain scission induced by the mechanical load. The E-Poly specimens did not fail during the 5 weeks of testing, and FTIR did not reveal detectable oxidation in either control or loaded samples. Discusssion and conclusion: Though the sequential processing of SXL creates a material with a lower free radical content compared to once-annealed material, it still yields a material prone to oxidation under extreme conditions, raising questions about its long-term oxidative stability. E-Poly™, protected by α-tocopherol, continues to exhibit high oxidation resistance even under adverse conditions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 2 - 2
1 Nov 2018
van Griensven M
Full Access

The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons and bone. In this study, biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon side and isotropic at the bone side. Total porosity ranged from 50–80% and the majority of pores were <100–300 µm. Young's modulus varied from 689–1322 kPa. In addition, human adMSC were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon, enthesis and cartilage markers significantly changed in each region of the scaffolds. We functionalized those scaffolds with heparin and explored their ability to deliver TGF-β2 and GDF5. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. The combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 113 - 113
1 Nov 2018
Grad S
Full Access

In recent years, novel therapies for intervertebral disc (IVD) regeneration have been developed that are based on the delivery of cells, biomaterials or bioactive molecules. The efficacy of these biological therapies depends on the type and degree of IVD degeneration. Whole organ culture bioreactors provide an attractive platform for pre-clinical testing of IVD therapeutics, since the cells are maintained within their native extracellular matrix, and the endplate remains intact to fulfil its function. Moreover, defined regimes of mechanical stress are applied to the IVD, representing either physiological or degenerative, detrimental loading. Different degrees of degeneration can be induced by high load, low nutrition, enzyme injection, and/or mechanical damage; while recent organ culture models also implement an inflammatory component. Using whole organ culture models, we found that mesenchymal stem cell injection into nucleotomized IVDs had an anabolic effect on the IVD cells. Furthermore, hyaluronan hydrogels were beneficial for cell delivery and mechanical support. We also found that anti-inflammatory treatment could partially prevent the induction of cytokines in an inflammatory model. However, chemokine delivery did not induce a significant repair response in an annulus fibrosus defect. In line with 3R principles, relevant ex-vivo models are essential to reliably test biological IVD treatments


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 522 - 522
1 Dec 2013
Sato T Ito H Tanino H Nishida Y
Full Access

[Introduction]. It is said that the mechanical stress is a main factor to advance degenerative osteoarthritis. Therefore, to keep the joint stability is very important to minimize mechanical stress. Methods to evaluate bone-related factor are almost established, especially in hip dysplasia. On the other hand, it is unclear how much each soft tissue contribute to the joint stability. In this study we evaluated the soft tissue contribution for hip joint stability by distraction testing using MTS machine. [Materials & Methods]. We used seven fresh frozen hips from four donors, whose race was all western and reason of death was not related to hip disease in all cases. Average age of them at death was 83 years old. Mean average weight and height were each 52 kg and 162 cm. We retrieved hemi pelvis and proximal femur which kept hip joint intact. We removed all other soft tissue except iliofemoral ligament, pubofemoral ligament, ischiofemoral ligament and capsule. The hemi-pelvis mounted on angular-changeable fixator and the femur fixed to MTS machine (Figure 1). XY sliding table was used to minimize the horizontal direction stress during distraction. MTS machine was set to pull the femur parallel to its shaft by 0.4 mm/sec velocity against pelvis after 10N compression and to keep 5 mm distance for 5 seconds. We measured the force at 1 mm, 3 mm, 5 mm distraction. In case the joint was dislocated, the maximum force just before dislocation was recorded. The specimen was changed its posture as neutral (flexion0° abduction0° external rotation0°), flexion (flexion60° abduction0° external rotation0°), abduction (flexion0° abduction30° external rotation0°) and extension (extension20° abduction0° external rotation0°). Each position was measured in six sequential conditions, which are normal, Incised iliofemoral ligament, Circumferentially incised capsule, resected capsule, labral radial tear and resected labrum. After measurement joint surface was observed to evaluate the joint condition. [Results]. We excluded the one specimen two hips by osteoarthritic change of joint surface. The average force needed for 5 mm distraction in normal condition at neutral, flexion, extension and abduction posture was each 95.8N, 52.7N, 162.8N and 94.2N. The force was biggest in extension posture and smallest in flexion posture. The force was statistically reduced from 95.8N to 31.5N after iliofemoral ligament incision in neutral position. The force was also statistically reduced from 145.6N to 31.9N after Circumferential capsule incision in extension posture (Figure 2). In all posture, traction force was reduced after capslotomy and all hip dislocated in all cases. [Discussion]. We could conclude that iliofemoral ligament works much in neutral and extension posture, and capsule helps its work in extension more than in neutral posture. We have reported the zona orbicularis will be important as joint stabilizer before. Capsule including zona orbicularis makes hip joint more stable in any posture because dislocation happened easily after capsule resection in all posture


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 310 - 310
1 Mar 2004
DŸrr H Martin H Pellengahr C Jansson V
Full Access

Introduction: In a photoelasticimetric model Ondrouch suggested a correlation between stress in arthritic joints, microfractures and bone cysts. Other authors believe in a causative role of access of joint ßuid to bone in periarticular osteolysis. In our opinion mechanical stress induced by cartilage defects induces microfractures followed by cystic bone degradation. Materials and Methods: A þnite element analysis using the well described parameters for cancellous and cortical bone as also cartilage was performed. Several typical situations of localized and general cartilage pathologies were calculated in a schematic hip joint situation. Results: A signiþcant impact of cartilage defect size and resulting stress distribution correlating well to cystic lesions of patients with osteoarthritis of the hip could be shown. In localized cartilage defects max. stress was calculated at the rims of the lesions in the subchondral bone. Assuming a situation with an allready preformed cyst either in the acetabulum or the femoral head, further enlargement of the cyst will appear due to a maximal stress at the rims of the lesions. Femoral lesions have a comparable small tendency to grow, thereas acetabular lesions will grow rapidly. Discussion and Conclusion: These þndings þt very well with the clinical observations. Cartilage lesions inducing microfractures by mechanical stress may be able to explain the process of subchondral cyst formation. A process involving osteoclasts and myxomatous cells within the bone marrow seems to be a subsequent mechanism of remodelling and formation of myxomatous cyst content


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 67 - 67
1 May 2019
Lewallen D
Full Access

The amount of bone loss due to implant failure, loosening, or osteolysis can vary greatly and can have a major impact on reconstructive options during revision total knee arthroplasty (TKA). Massive bone loss can threaten ligamentous attachments in the vicinity of the knee and may require use of components with additional constraint to compensate for associated ligamentous instability. Classification of bone defects can be helpful in predicting the complexity of the reconstruction required and in facilitating preoperative planning and implant selection. One very helpful classification of bone loss associated with TKA is the Anderson Orthopaedic Research Institute (AORI) Bone Defect Classification System as it provides the means to compare the location and extent of femoral and tibial bone loss encountered during revision surgery. In general, the higher grade defects (Type IIb or III) on both the femoral and tibial sides are more likely to require stemmed components, and may require the use of either structural graft or large augments to restore support for currently available modular revision components. Custom prostheses were previously utilised for massive defects of this sort, but more recently have been supplanted by revision TKA component systems with or without special metal augments or structural allograft. Options for bone defect management are: 1) Fill with cement; 2) Fill with cement supplemented by screws or K-wires; 3) Morselised bone grafting (for smaller, especially contained cavitary defects); 4) Small segment structural bone graft; 5) Impaction grafting; 6) Porous metal cones or sleeves 7) Massive structural allograft-prosthetic composites; 8) Custom implants. Of these, use of uncemented highly porous metal metaphyseal cones in combination with an initial cemented or partially cemented implant has been shown to provide versatile and highly durable results for a range of bone defects including those previously requiring structural bone graft. The hybrid fixation combination of both cement and cementless fixation of an individual tibial or femoral component has emerged as a frequent and often preferred technique. Initial secure and motionless interfaces are provided by the cemented portions of the construct, while subsequent bone ingrowth to the cementless porous metal portions is the key to long term stable fixation. As bone grows into the porous portions there is off loading and protection of the cemented interfaces from mechanical stresses. While maximizing support on intact host bone has been a longstanding fundamental principle of revision arthroplasty, this is facilitated by the use of metaphyseal cones or sleeves in combination with initial fixation into the adjacent diaphysis. Preoperative planning is facilitated by good quality radiographs, supplemented on occasion by additional imaging such as CT. Fluoroscopically controlled x-ray views may assist in diagnosing the loose implant by better revealing the interface between the implant and bone and can facilitate accurate delineation of the extent of bone deficiency present. Part of the preoperative plan is to ensure adequate range and variety of implant choices and bone graft resources for the planned reconstruction allowing for the potential for unexpected intraoperative findings such as occult fracture through deficient periprosthetic bone. While massive bone loss may compromise ligamentous attachment to bone, in the majority of reconstructions, the degree of revision implant constraint needed for proper balancing and restoration of stability is independent of the bone defect. Thus, some knees with minimal bone deficiency may require increased constraint due to the status of the soft tissues while others involving very large bone defects, especially of the cavitary sort, may be well managed with minimal constraint


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 15 - 15
1 Apr 2018
Lee K
Full Access

Anterior cruciate ligament (ACL) reconstruction is the current standard of care for ACL tears. However, the results are not consistently successful, autografts or allografts have certain disadvantages, and synthetic grafts have had poor clinical results. The aim of this study was to determine the efficacy of tissue engineering decellularized tibialis tendons by recellularization and culture in a dynamic tissue bioreactor. To determine if recellularization of decellularized tendons combined with mechanical stimulation in a bioreactor could replicate the mechanical properties of the native ACL and be successfully used for ACL reconstruction in vivo. Porcine tibialis tendons were decellularized and then recellularized with human adult bone marrow-derived stem cells. Tendons were cultured in a tissue bioreactor that provided biaxial cyclic loading for up to 7 days. To reproduce mechanical stresses similar to hose experienced by the ACL within the knee joint, the tendons were subjected to simultaneous tension and torsion in the bioreactor. Expression of tendon-specific genes, and newly synthesized collagen and glycosaminoglycan (GAG) were used to quantify the efficacy of recellularization and dynamic bioreactor culture. The mechanical strength of recellularized constructs was measured after dynamic stimulation. Finally, the tissue-engineered tendons were used to reconstruct the ACL in mini-pigs and mechanical strength was assessed after three months. Dynamic bioreactor culture significantly increased the expression of tendon-specific genes, the quantity of newly synthesized collagen and GAG, and the tensile strength of recellularized tendons. After in vivo reconstruction, the tensile strength of the tissue-engineered tendons increased significantly up to 3 months after surgery and were within 80% of the native strength of the ACL. Our translational study indicates that the recellularization and dynamic mechanical stimuli can significantly enhance matrix synthesis and mechanical strength of decellularized porcine tibialis tendons. This approach to tissue engineering can be very useful for ACL reconstruction and may overcome some of the disadvantages of autografts and allografts