INTRODUCTION. Allograft reconstruction after resection of primary bone sarcomas has a non-union rate of approximately 20%. Achieving a wide surface area of contact between host and allograft bone is one of the most important factors to help reduce the non-union rate. We developed a novel technique of haptic robot-assisted surgery to reconstruct bone defects left after primary bone sarcoma resection with structural allograft. METHODS. Using a sawbone distal femur joint-sparing hemimetaphyseal resection/reconstruction model, an identical bone defect was created in six sawbone distal femur specimens. A tumor-fellowship trained orthopedic surgeon reconstructed the defect using a simulated sawbone allograft femur. First, a standard, ‘all-manual’ technique was used to cut and prepare the allograft to best fit the defect. Then, using an identical sawbone copy of the allograft, the novel haptic-robot technique was used to prepare the allograft to best fit the defect. All specimens were scanned via CT. Using a separately validated technique, the surface area of contact between host and allograft was measured for both (1) the all-manual reconstruction and (2) the robot-assisted reconstruction. All contact surface areas were normalized by dividing absolute contact area by the available surface area on the exposed cut surface of host bone. RESULTS. The mean area of contact between host and allograft bone was 24% (of the available host surface area) for the all-manual group and 76% for the haptic robot-assisted group (p=0.004). CONCLUSIONS. This is the first report to our knowledge of using haptic robot technology to assist in
Objectives. Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The aims of this study is attempt to assess the effects of laser perforations on osteoinduction in cortical bone allografts. Methods. Sixteen wistar rats were divided into two groups according to the type of
Background. Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone marrow mesenchymal stem cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods. Thirty-two wistar rats were divided into four groups according to the type of
Background.