Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_II | Pages 230 - 231
1 May 2006
Dangerfield PH Davey R Chockalingam N Cochrane T Dorgan JC
Full Access

Background: To compare height-adjusted fat and fat-free mass components of body composition in girls with adolescent idiopathic scoliosis to young adolescents with eating disorders. Adolescent idiopathic scoliosis (AIS) has been linked with low bone densities. Animal and human studies have shown that bone densities are influenced by a wide variety of inter-related factors that includes body fat, oestrogen levels, nutritional status and energy balance. Anthropometric studies have reported girls with AIS as being taller and more slender than their age-matched peers and that they also exhibit complex patterns of body asymmetry, particularly in the upper limb. There are also some studies report eating disorders in this population. Methods: Height-adjusted fat and fat-free mass components of body composition were examined. Fat mass index (FMI) and fat-free mass index (FFMI) were calculated and normalised for height and were superimposed onto UK 1990 growth reference data. The data for left and right limb length was also compared. A sample of 325 girls with AIS referred to the specialist spinal unit in Liverpool during the period 1970–1990. Results: The fat mass index and fat-free mass index were reduced in this sample of AIS subjects compared with normal reference children, but were similar to those diagnosed with eating disorders (anorexia nervosa). The cohort also exhibited significant upper limb asymmetry. Conclusion: The findings suggest that this population has significantly low fat mass compared to normal, healthy reference values. Since fat mass reflects energy balance, nutritional status (possibly eating disorders) and is closely linked to endocrine function, the implications of reduced fat mass on growth, bone mass accretion and the aetiology of AIS merit further investigation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 38 - 38
1 Sep 2012
Rasmussen J Zerahn B Paulsen A Andersen K Sorensen AK Olsen B
Full Access

Objective. To compare regional body composition, bone mineral density (BMD), and clinical outcome in patients with two different shoulder arthroplasty designs. Materials and Methods. This cross-sectional study included 54 patients with a total of 63 shoulder arthroplasties. There were 18 men and 45 women with a mean age of 68.9 years SD ± 10.5. Mean follow-up time was 39.2 months SD ± 14.4. The patients were divided into three groups according to their history: 22 patients were diagnosed with a proximal humeral fracture and treated with a stemmed hemi arthroplasty, 11 patients were diagnosed with osteoarthritis and treated with a stemmed hemi arthroplasty, and 30 patients were diagnosed with osteoarthritis and treated with a resurfacing arthroplasty. All patients underwent a one-day protocol: Regional Dual X-ray Absorptiometri (DXA) was used to measure BMD of the distal third of humerus and regional body composition of the upper arm. The clinical outcome was measured using Western Ontario Osteoarthritis of the Shoulder index (WOOS) and Constant-Murley score. Results. All three groups were comparable regarding demographic data. Mean BMD of the distal third of humerus was 1.029 g/cm2 SD ± 0.204, mean tissue mass of the upper arm was 2.6 kg SD ± 0.7 and mean muscle mass was 1.4 kg SD ± 0.6. BMD of the distal third of humerus, tissue mass and muscle mass were significantly higher in the group diagnosed with osteoarthritis and treated with a resurfacing arthroplasty compared to the group diagnosed with a proximal humeral fracture and treated with a stemmed hemi arthroplasty, P = 0.03, P = 0.01 and P = 0.02 respectively. Median Constant score was 45.0, range 6–89, median WOOS 633, range 28–1824, and median strength 7.0 units, range 0–25. There were no significant differences between the three groups. Nevertheless, there was a trend towards a higher Constant-Murley score and muscle strength in the group of patients diagnosed with osteoarthritis and treated with a resurfacing arthroplasty compared to the group of patients diagnosed with a proximal humeral fracture and treated with a stemmed hemi arthroplasty. Conclusion. After shoulder arthroplasty BMD of the distal third of humerus and body composition are apparently more dependent on diagnosis rather than arthroplasty design. However, a larger number of patients diagnosed with osteoarthritis and treated with a stemmed hemi arthroplasty are needed to support this


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 237 - 237
1 Sep 2012
Loughenbury P Owais A Taylor L Macfie J Andrews M
Full Access

Introduction. Obesity has been associated with higher complication rates and poorer outcomes following joint replacement surgery. Body mass index (BMI) is a simple index of body composition and forms part of preoperative assessment. It does not take into account the proportion of lean mass and body fat and can give a false impression of body composition in healthy manual workers. A more accurate measure of body composition is available using non-invasive bioimpedance methods. This study aims to identify whether BMI provides an accurate measure of body fat composition in patients awaiting lower limb arthroplasty surgery. Methods. Consecutive patients attending for pre-assessment clinic prior to total knee and hip replacement surgery were examined. All patients had their BMI calculated and underwent bioimpedance testing using a bedside Bodystat 1500 scanner (Bodystat, UK). Results. 83 patients (28 male) were included. Mean age was 68 years (range 16 to 92). All were awaiting lower limb arthroplasty surgery (39 primary total hip replacement, 4 revision total hip replacement, 38 primary total knee replacement, one unicompartmental knee replacement and one patellofemoral joint replacement). Mean BMI was 30.8 (range 20.8 to 48.9). Mean body fat percentage was 37.4% (range 17% to 53.9%). A weak correlation was seen between the calculated BMI and the measured body fat percentage (r=0.42, Pearson's correlation coefficient). Mean body fat percentage in obese patients (BMI > 30; mean BMI 34.9; n=42) was 42% while in the non-obese patients (BMI < 30; mean BMI 26.6; n=41) was 32.8%. This difference was significant (p<0.001). Conclusion. In patients undergoing lower limb arthroplasty the calculated BMI has a weak correlation with the measured body fat percentage. Bedside, non-invasive bioimpedance analysis provides a quick and accurate measure of body composition and can be used during preoperative assessment. Future correlation of outcome against body composition and BMI will validate the use of body composition in these patients. Care should be taken when relying on BMI alone to assess body fat composition


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 44 - 44
1 Dec 2020
Torgutalp ŞŞ Korkusuz F
Full Access

Background

Although there are predictive equations that estimate the total fat mass obtained from multiple-site ultrasound (US) measurements, the predictive equation of total fat mass has not been investigated solely from abdominal subcutaneous fat thickness. Therefore, the aims of this study were; (1) to develop regression-based prediction equations based on abdominal subcutaneous fat thickness for predicting fat mass in young- and middle-aged adults, and (2) to investigate the validity of these equations to be developed.

Methods

The study was approved by the Local Research Ethics Committee (Decision number: GO 19/788). Twenty-seven males (30.3 ± 8.7 years) and eighteen females (32.4 ± 9.5 years) were randomly divided into two groups as the model prediction group (19 males and 12 females) and the validation group (8 males and 6 females). Total body fat mass was determined by dual-energy X-ray absorptiometry (DXA). Abdominal subcutaneous fat thickness was measured by US. The predictive equations for total fat mass from US were determined as fat thickness (in mm) × standing height (in m). Statistical analyses were performed using R version 4.0.0. The association between the total fat mass and the abdominal subcutaneous fat thickness was interpreted using the Pearson test. The linear regression analysis was used to predict equations for total body fat mass from the abdominal subcutaneous fat thickness acquired by US. Then these predictive equations were applied to the validation group. The paired t-test was used to examine the difference between the measured and the predicted fat masses, and Lin's concordance correlation coefficient (CCC) was used as a further measure of agreement.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 28 - 28
4 Apr 2023
Bolam S Park Y Konar S Callon K Workman J Monk P Coleman B Cornish J Vickers M Munro J Musson D
Full Access

Obesity is associated with poor outcomes and increased risk of failure after rotator cuff (RC) repair surgery. The effect of diet-induced obesity (DIO) on enthesis healing has not been well characterised and whether its effects can be reversed with dietary intervention is unknown. We hypothesised that DIO would result in inferior enthesis healing in a rat model of RC repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were cullers and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups prior to surgery, and subsequently reversed in the HF-CD group after surgery. At 12 weeks post-surgery, plasma leptin concentrations were higher in the HFD group compared to the CD group (5.28 vs. 2.91ng/ml, P=0.003). Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD compared to the CD group at 12 weeks (overall histological score 6.20 (P=0.008), 4.98 (P=0.001) and 8.68 out of 15, respectively). The repaired entheses in the HF-CD group had significantly lower (26.4 N, P=0.028) load-at-failure 12 weeks post-surgery compared to the CD group (34.4 N); while the HFD group was low, but not significantly different (28.1 N, P=0.096). Body mass at the time of surgery, plasma leptin and body fat percentage were negatively correlated with histological scores and plasma leptin with load-at-failure 12 weeks post-surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Exploring interventions that improve the metabolic state of obese patients and counselling patients appropriately about their modest expectations after repair should be considered


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 127 - 127
1 Feb 2017
Fukunaga M Morimoto K Ito K
Full Access

Thigh-calf contact force is the force acting on posterior side of the thigh and calf during deep knee flexion. It has been reported the force is important to analyze the kinetics of a lower limb and a knee joint. Some previous researches reported the measured thigh-calf contact force, however, the values varied among the reports. Furthermore, the reports indicated that there were large variations even in a single report. One of the reports tried to find the relationship between the magnitude of thigh-calf contact force and anthropometric measurement as height, weight or perimeter of the lower limb, however, there could not found clear correlations. We considered that the cause of the variations might be the difference of the posture. At heel-rise squatting posture, we can bend or stand upright the upper body. Therefore we tried to create the equation to estimate the thigh-calf contact force by multiple regression analysis, using the anthropometric and posture parameters as explanatory variables. We performed the experiment to measure thigh-calf contact force, joint angles and anthropometric information. Test subjects were 10 healthy male. First we measured their height, weight, perimeter of the thigh and muscle mass of the legs and whole body. Muscle mass was measured by body composition meter (BC-118E, Tanita Co., Japan). Then, test subjects were asked to squat with their heels lifted and with putting the pressure distribution sensor between thigh and calf. And they bent their upper body forward and backward. The pressure sensor to be used was ConfroMat System (Nitta Co., Japan). After that, we measured the joint angles of the hip, knee and ankle, and the angle between the floor and upper body using the videos taken during the experiment. Then, we created the equation to estimate the thigh-calf contact force by linear combination of the anthropometric values and joint angles. The coefficients were settled as to minimize the average error between measured and estimated values. Results are shown in Fig.1. Forces were normalized by the body weight of the test subjects. Because the horizontal axes show the measured and vertical axis show the estimated values, the estimation is accurate when the plots are near the 45-degree line. Average error was 0.11BW by using only physical values, 0.15BW by angles and 0.06BW using both values. And the maximum error was 0.69BW, 0.43BW and 0.32BW respectively. Thus we could estimate the thigh-calf contact force by multiple regressions, using both physical parameters and angles to indicate the posture. Using the equation, we would be able to analyze the kinetics of a lower limb by physical and motion measurement. Our future work might be increasing the number of subjects to consider the appropriateness, because the test subjects of this study were very limited


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 68 - 68
1 Jan 2016
Yang C Chang C Chen Y Chang C
Full Access

Introduction. Total knee arthroplasty [TKA] is a common procedure to relieve painful disability from advanced knee arthritis. However, related blood loss, ranging from 800 to 1200 ml, increase risk and disruption of recovery in anemic patients following TKA. Various methods for blood conservation had been proposed and examined. In the literature, the intra-articular administration of a solution mixing bupivacaine and epinephrine was commonly used after knee surgeries. Therefore, we conducted a retrospective, case controlled review of our primary TKAs to determine the hemostatic efficacy of this regimen following TKAs. Material and Methods. Over a period of 12 months, 135 eligible patients were divided two groups simply according to the intra-articular injection or not: a control group (N=63) and a treatment group (N=72). In the treatment group, a 40 ml vial of 0.5% bupivacaine with epinephrine 1: 200000 was given prior to the deflation of pneumatic tourniquet. No drainage was used in all TKAs. Without recordable drainage, a Gross formula, considering gender and body composition, was used for estimate blood loss following TKAs. In addition, serial changes in hemoglobin as well as the requirement of allogenic transfusion were also compared between groups. Results. The mean calculated blood loss in the treatment group was 650.4 +/− 257.1 ml, compared to 648.8+/− 222.1 ml in the control group (p=0.9). Similar decrease in hemoglobin as well as rates of allogenic transfusion needs were observed between groups.[2.5+/− 0.9 g/dl vs. 2.4+/− 0.8 g/dl; 13.9% vs. 12.7%, respectively]. Discussion and Conclusion. Although local analgesics mixing vasoconstrictive agents seem a logic solution to save blood loss and relieve pain simultaneously, the hypothesis that intra-articular injection of bupivacaine and epinephrine would save blood and even transfusion needs following TKAs is not supported by various bleeding parameters in this study. In addition to temporary benefit in pain relief, this regimen only has little effect on blood conservation. Therefore, new regimen as well as hemostatic means are still required and explored to reduce blood loss following TKAs


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_6 | Pages 5 - 5
1 Feb 2013
Perry D Green D Bruce C Pope D Dangerfield P Platt M Hall A Jones H
Full Access

Objective. There is mounting evidence to suggest a vascular insult is responsible for Perthes' disease, and it is suggested that this may have long-term implications for the vascular health of affected individuals. This study sought to use ultrasound measures to investigate vascular structure and function in children affected by Perthes' disease. Material and Methods. This case control study encompassed 149 cases and 146 controls, frequency matched for age and sex. Endothelial function was measured using the technique of flow-mediated dilatation of the brachial artery, and alterations in arterial flow were recorded in response to an ischaemic stimulus. Results. There was a significant structural alteration in the vasculature amongst individuals with Perthes' disease (resting brachial artery diameter (cases 2.97mm vs. controls 3.11mm; p=0.01)), which remained even after adjusting for height. Additionally, there was a notable reduction in blood velocity (cases 33.84cm/sec vs controls 37.83cm/sec; p=0.01) and blood flow (cases 149.82ml/min vs. controls 184.67 ml/min; p=0.001), which was independent of baseline arterial size. There was no evidence to suggest that flow mediated dilatation of the brachial artery was impaired amongst affected individuals (p=0.71). Conclusion. Children with Perthes' disease exhibit small artery calibre and reduced function, which is independent of body composition. This data implies that that Perthes' disease may reflect a wider vascular phenomenon that could have long-term implications for the vascular health of affected individuals


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 34 - 34
1 Jan 2013
Borhani M Bull A McGregor A
Full Access

Background. The measurement of pelvic kinematics is key to the analysis of aberrant movement patterns of lower back, yet to date technical issues of skin artefacts, body composition and optical motion tracking sensor occlusion [1] are unresolved. Methods. In this study, an alternative technical pelvic coordinate system to the standard right and left anterior superior iliac spine (ASIS) and posterior superior iliac spine (PSIS) is developed and evaluated in two healthy male subjects (slim and overweight). The alternative system consists of a cluster of 3 retro-reflective markers attached to the Sacrum, thus allowing position and motion of the pelvis to be measured. In order to use these technical markers a static trial must be performed. The ASISs were calibrated relative to the technical frame; and the anatomical frame of the pelvis was defined relative to the technical coordinate frame. Each participant completed 5 walking trials and the angular rotations of the two methods were investigated using Euler angles. Results. Results from both methods are in agreement with literature (posterior/anterior tilt −4°, Obliquity −2.3°, and posterior/anterior rotation 4.58°). Conclusions. The two methods were markedly different for the overweight subject, yet these were more similar for the slim subject. This allows the hypothesis to be developed that as the two methods are similar for the slim subject, the method that shows greater similarity between the slim and overweight measures is most likely to be the more robust measurement system. This is the case for the novel method; therefore this hypothesis should be tested in future studies. Conflicts of interest. None. Sources of funding. None


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 94 - 94
1 Jan 2017
Tas S Yilmaz S Onur M Korkusuz F
Full Access

Obesity decreases patellar tendon stiffness in females but not males Introduction Patellar tendon (PT) injuries are frequent due to excessive mechanical loading during strenuous physical activity. PT injury incidence is higher in females and obese individuals. The reason behind higher tendon injury incidence in females and obese individuals might be structural changes in tendons such as stiffness or elasticity. Tendon stiffness can recently be quantified using shear wave elastography (SWE). We aimed to examine the stiffness of PT in healthy sedentary participants using this new technology. This prospective study was carried out with 58 (34 female, 24 male) healthy sedentary participants between the ages of 18–44 years (27.5±7.7 years). Body mass and body fat percentage were measured with the Bioelectrical Impedance method using Tanita BC-418 MA Segmental Body Composition Analyser (Tanita Corporation, Tokyo, Japan). Participants were subsequently categorized into ‘normal-weight’ (BMI < 23 kg/m2) and ‘obese’ (BMI>27.5 kg/m2). SWE of the PT was measured with the ACUSON S3000 (Siemens Medical Solution, Mountain Wiew, CA, USA) ultrasound device using the Siemens 9L4 (4–9 MHz) linear-array probe with the Virtual Touch Imaging Quantification® method. The measurement was performed by placing the US probe longitudinally on patellar tendon with knee flexed at 30°. The region between about 1 cm distal of patellar bone-tendon junction and 1 cm proximal of bone-tendon junction of tibia was used for PT stiffness measurement (Figure 1). Average of three successive measurements at 10 sec intervals was recorded as PT stiffness. PT stiffness was quantified with MATLAB Version 2015 (Mathworks, Massachusetts, USA) by converting colour data into numbers. PT stiffness, in males, in females, in normal males, in obese males, in normal females, and in obese females was 8.6±1.0 m/sec, 7.4±1.1 m/sec, 8.6±1.1 m/sec, 8.5±1.0 m/sec, 7.9±0.9 m/sec, and 6.2±0.9 m/sec, respectively. Average body fat percentage in males, in females, in normal males, in obese males, in normal females, and in obese females was 20.1±7.4 kg/m2, 30.1±8.1 kg/m2, 15.4±5.2 kg/m2, 24.7±4.6 kg/m2, 25.6±5.5 kg/m2, and 38.1±5.0 kg/m2, respectively. Males PT stiffness was higher when compared to that of females (p=0.000). PT stiffness was similar in obese and normal males (p=0.962) but obese females had lower PT stiffness compared to normal females (p=0.001). PT stiffness of females was lower than males and obesity decreased PT stiffness in females but not in males. The possible explanation of lower PT stiffness in females might be due to their higher estrogen levels that lead to a decrease in estradiol level and collagen synthesis. Lower tendon stiffness in obese females might be metabolic effects due to the increased adipose tissue that contains proteins such as adipokinome, chemerin, lipocalin 2, serum amyloid A3 and adiponectin. These proteins lead to disturbance of tendon homeostasis and decreased collagen content. Altered tendon homeostasis and decreased collagen content may lead to a decrease in tendon stiffness. Decreased PT stiffness in especially in obese women might be associated with increased risk of PT injury