Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
The Bone & Joint Journal

Include Proceedings
Dates
Year From

Year To
The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 319 - 324
1 Mar 2014
Abolghasemian M Sadeghi Naini M Tangsataporn S Lee P Backstein D Safir O Kuzyk P Gross AE

We retrospectively reviewed 44 consecutive patients (50 hips) who underwent acetabular re-revision after a failed previous revision that had been performed using structural or morcellised allograft bone, with a cage or ring for uncontained defects. Of the 50 previous revisions, 41 cages and nine rings were used with allografts for 14 minor-column and 36 major-column defects. We routinely assessed the size of the acetabular bone defect at the time of revision and re-revision surgery. This allowed us to assess whether host bone stock was restored. We also assessed the outcome of re-revision surgery in these circumstances by means of radiological characteristics, rates of failure and modes of failure. We subsequently investigated the factors that may affect the potential for the restoration of bone stock and the durability of the re-revision reconstruction using multivariate analysis.

At the time of re-revision, there were ten host acetabula with no significant defects, 14 with contained defects, nine with minor-column, seven with major-column defects and ten with pelvic discontinuity. When bone defects at re-revision were compared with those at the previous revision, there was restoration of bone stock in 31 hips, deterioration of bone stock in nine and remained unchanged in ten. This was a significant improvement (p <  0.001). Morselised allografting at the index revision was not associated with the restoration of bone stock.

In 17 hips (34%), re-revision was possible using a simple acetabular component without allograft, augments, rings or cages. There were 47 patients with a mean follow-up of 70 months (6 to 146) available for survival analysis. Within this group, the successful cases had a minimum follow-up of two years after re-revision. There were 22 clinical or radiological failures (46.7%), 18 of which were due to aseptic loosening. The five and ten year Kaplan–Meier survival rate was 75% (95% CI, 60 to 86) and 56% (95% CI, 40 to 70) respectively with aseptic loosening as the endpoint. The rate of aseptic loosening was higher for hips with pelvic discontinuity (p = 0.049) and less when the allograft had been in place for longer periods (p = 0.040).

The use of a cage or ring over structural allograft bone for massive uncontained defects in acetabular revision can restore host bone stock and facilitate subsequent re-revision surgery to a certain extent.

Cite this article: Bone Joint J 2014;96-B:319–24.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects.

Cite this article: Bone Joint J 2013;95-B, Supple A:103–8.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option.

Cite this article: Bone Joint J 2013;95-B:166–72.