In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
We retrospectively assessed the value of identifying
impinging osteophytes using dynamic computer simulation of CT scans
of the elbow in assisting their arthroscopic removal in patients
with osteoarthritis of the elbow. A total of 20 patients were treated
(19 men and one woman, mean age 38 years (19 to 55)) and followed
for a mean of 25 months (24 to 29). We located the impinging osteophytes
dynamically using computerised three-dimensional models of the elbow
based on CT data in three positions of flexion of the elbow. These
were then removed arthroscopically and a capsular release was performed. The mean loss of extension improved from 23° (10° to 45°) pre-operatively
to 9° (0° to 25°) post-operatively, and the mean flexion improved
from 121° (80° to 140°) pre-operatively to 130° (110° to 145°) post-operatively.
The mean Mayo Elbow Performance Score improved from 62 (30 to 85)
to 95 (70 to 100) post-operatively. All patients had pain in the
elbow pre-operatively which disappeared or decreased post-operatively.
According to their Mayo scores, 14 patients had an excellent clinical
outcome and six a good outcome; 15 were very satisfied and five
were satisfied with their post-operative outcome. We recommend this technique in the surgical management of patients
with osteoarthritis of the elbow. Cite this article:
We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects.
We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects.
We have measured the three-dimensional patterns of carpal deformity in 20 wrists in 20 rheumatoid patients in which the carpal bones were shifted ulnarwards on plain radiography. Three-dimensional bone models of the carpus and radius were created by computerised tomography with the wrist in the neutral position. The location of the centroids and rotational angle of each carpal bone relative to the radius were calculated and compared with those of ten normal wrists. In the radiocarpal joint, the proximal row was flexed and the centroids of all carpal bones translocated in an ulnar, proximal and volar direction with loss of congruity. In the midcarpal joint, the distal row was extended and congruity generally well preserved. These findings may facilitate more positive use of radiocarpal fusion alone for the deformed rheumatoid wrist.