header advert
Results 1 - 2 of 2
Results per page:
Applied filters
The Bone & Joint Journal

Include Proceedings
Dates
Year From

Year To
The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 2 | Pages 401 - 408
1 May 1968
Prasad GC Reynolds JJ

1. The use of a protein-free synthetic medium has provided a new technical approach to the study of fracture healing in vitro.

2. The tibiae of fourteen-day embryonic chicks were cut in half in the middle of the shaft, the fragments were placed in apposition and the explants grown in vitro for up to sixteen days. The process of bone repair was studied by means of histology and biochemical estimations.

3. The rate of growth in length of fractured bones was greater in an atmosphere containing 50 per cent of oxygen than in one with 20 per cent oxygen, thus emphasising the importance of an adequate oxygen supply for the regeneration of osteogenic cells.

4. The effect of varying the concentration of glucose in the medium was investigated. Two milligrams of glucose per millilitre was the most favourable for healing; higher levels caused fibroblastic changes in the cartilage cells and inhibited the proliferation of osteogenic cells at the fracture site.

5. Histological examination showed that many of the phenomena that occur in the repair of fractures in vivo can be reproduced in vitro in synthetic medium. Similar results were obtained whether the fracture was made in whole bones or in isolated shafts from which the cartilaginous ends had been removed; the latter are more favourable for biochemical study.


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 4 | Pages 770 - 779
1 Nov 1963
Udupa KN Prasad GC

1. The process of repair after fracture of the humerus of the growing rat has been studied by histological, histochemical and biochemical methods.

2. Both periosteal and surrounding mesenchymal cells take part in the process of repair.

3. The primary framework of collagen bridging the gap is mainly formed by the mesenchymal cells, while calcification and ossification of the framework is largely a function of the periosteum.

4. The mucopolysaccharide content rises rapidly in the first week after injury, and is followed by a rise in the collagen content during the second week. The deposition of calcium phosphate during the third and fourth weeks causes an apparent fall in the collagen content during that period. The collagen content tends to return to normal during the phase of remodelling in the fifth and sixth weeks.

5. The tensile strength of the healing bone bears a close relation to its collagen content.