The purpose of this study was to investigate the prevalence of
sarcopenia and to examine its impact on patients with degenerative
lumbar spinal stenosis (DLSS). This case-control study included two groups: one group consisting
of patients with DLSS and a second group of control subjects without
low back or neck pain and related leg pain. Five control cases were
randomly selected and matched by age and gender (n = 77 cases and
n = 385 controls) for each DLSS case. Appendicular muscle mass,
hand-grip strength, sit-to-stand test, timed up and go (TUG) test,
and clinical outcomes, including the Oswestry Disability Index (ODI)
scores and the EuroQol EQ-5D were compared between the two groups.Aims
Patients and Methods
Peri-prosthetic patellar fracture following resurfacing
as part of total knee replacement (TKR) is an infrequent yet challenging
complication. This case-control study was performed to identify
clinical, radiological and surgical factors that increase the risk
of developing a spontaneous patellar fracture after TKR. Patellar
fractures were identified in 74 patients (88 knees) from a series
of 7866 consecutive TKRs conducted between 1998 and 2009. After excluding
those with a previous history of extensor mechanism realignment
or a clear traumatic event, a metal-backed patella, any uncemented
component or subsequent infection, the remaining 64 fractures were
compared with a matched group of TKRs with an excellent outcome
defined by the Knee Society score. The mean age of patients with
a fracture was 70 years (51 to 81) at the time of TKR. Patellar
fractures were detected at a mean of 13.4 months (2 to 84) after
surgery. The incidence of patellar fracture was found to be strongly
associated with the number of previous knee operations, greater
pre-operative mechanical malalignment, smaller post-operative patellar
tendon length, thinner post-resection patellar thickness, and a
lower post-operative Insall-Salvati ratio. An understanding of the risk factors associated with spontaneous
patellar fracture following TKR provides a valuable insight into
prevention of this challenging complication.
To investigate the effect of instability on the remodelling of a minor articular surface offset, we created a 0.5 mm coronal step-off of the medial femoral condyle in 12 New Zealand white rabbits and transected the anterior cruciate ligament (ACL). A control group of 12 rabbits had only ACL resection and the opposite knee was used as the non-operated control. The osteoarthritic changes at 6, 12 and 24 weeks after surgery were evaluated histologically. In addition, changes in the immunological detection of 3-B-3(-) and 7-D-4 chondroitin-6-sulphate epitopes were determined because of the previous association of such changes with repair of cartilage and early osteoarthritis. In the instability/step-off group there was rapidly progressing focal degeneration of cartilage on the high side of the defect, not seen in previous step-off studies in stable knees. The rest of the femoral condyles and the tibial plateaux of the instability/step-off group had moderate osteoarthritis similar to that of the instability group. 3-B-3(-) was detectable in the early and the intermediate stages of osteoarthritis but no staining was seen in the severely damaged cartilage zones. Immunoreactivity with 7-D-4 increased as degeneration progressed. Our findings have shown that even a minor surface offset may induce rapid degeneration of cartilage when the stability of the knee is compromised.