Femoral impaction bone grafting was first developed in 1987 using
morselised cancellous bone graft impacted into the femoral canal
in combination with a cemented, tapered, polished stem. We describe
the evolution of this technique and instrumentation since that time. Between 1987 and 2005, 705 revision total hip arthroplasties
(56 bilateral) were performed with femoral impaction grafting using
a cemented femoral stem. All surviving patients were prospectively
followed for a mean of 14.7 years (9.8 to 28.3) with no loss to
follow-up. By the time of the final review, 404 patients had died.Aims
Patients and Methods
We reviewed 142 consecutive primary total hip replacements implanted into 123 patients between 1988 and 1993 using the Exeter Universal femoral stem. A total of 74 patients (88 hips) had survived for ten years or more and were reviewed at a mean of 12.7 years (10 to 17). There was no loss to follow-up. The rate of revision of the femoral component for aseptic loosening and osteolysis was 1.1% (1 stem), that for revision for any cause was 2.2% (2 stems), and for re-operation for any cause was 21.6% (19 hips). Re-operation was because of failure of the acetabular component in all but two hips. All but one femoral component subsided within the cement mantle to a mean of 1.52 mm (0 to 8.3) at the final follow-up. One further stem had subsided excessively (8 mm) and had lucent lines at the cement-stem and cement-bone interfaces. This was classified as a radiological failure and is awaiting revision. One stem was revised for deep infection and one for excessive peri-articular osteolysis. Defects of the cement mantle (Barrack grade C and D) were found in 28% of stems (25 hips), associated with increased subsidence (p = 0.01), but were not associated with endosteal lysis or failure. Peri-articular osteolysis was significantly related to the degree of polyethylene wear (p <
0.001), which was in turn associated with a younger age (p = 0.01) and male gender (p <
0.001). The use of the Exeter metal-backed acetabular component was a notable failure with 12 of 32 hips (37.5%) revised for loosening. The Harris-Galante components failed with excessive wear, osteolysis and dislocation with 15% revised (5 of 33 hips). Only one of 23 hips with a cemented Elite component (4%) was revised for loosening and osteolysis. Our findings show that the Exeter Universal stem implanted outside the originating centre has excellent medium-term results.