Advertisement for orthosearch.org.uk
Results 1 - 20 of 193
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 3 | Pages 358 - 364
1 Mar 2017
Torkington MS Davison MJ Wheelwright EF Jenkins PJ Anthony I Lovering AM Blyth M Jones B

Aims. To investigate the bone penetration of intravenous antibiotic prophylaxis with flucloxacillin and gentamicin during hip and knee arthroplasty, and their efficacy against Staphylococcus (S.) aureus and S. epidermidis. Patients and Methods. Bone samples from the femoral head, neck and acetabulum were collected from 18 patients undergoing total hip arthroplasty (THA) and from the femur and tibia in 21 patients during total knee arthroplasty (TKA). The concentration of both antibiotics in the samples was analysed using high performance liquid chromatography. Penetration was expressed as a percentage of venous blood concentration. The efficacy against common infecting organisms was measured against both the minimum inhibitory concentration 50, and the more stringent epidemiological cutoff value for resistance (ECOFF). Results. The bone penetration of gentamicin was higher than flucloxacillin. Relative to ECOFF, flucloxacillin concentrations were effective against S. aureus and S. epidermidis in all THAs and 20 (95%) TKAs. Gentamicin concentrations were effective against S. epidermidis in all bone samples. Gentamicin was effective against S. aureus in 11 (61.1%) femoral neck samples in THA. Effective concentrations of gentamicin against S. aureus were only achieved in four (19%) femoral and six (29%) tibial samples in TKA. Conclusion. Flucloxacillin and gentamicin were found to penetrate bone during THA and TKA. Gentamicin was effective against S. epidermidis in both THA and TKA, while levels were subtherapeutic against S. aureus in most TKAs. Bone penetration of both antibiotics was less in TKA than THA, and may relate to the use of a tourniquet. Using this antibiotic combination, effective cover against the two common infective organisms was achieved in all THAs and all but one TKA. Cite this article: Bone Joint J 2017;99-B:358–64


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 607 - 610
1 Jul 1998
Powles JW Spencer RF Lovering AM

Bone cement containing gentamicin may release antibiotic when fractured during revision operations. Tissue samples taken during surgery may be contaminated by gentamicin and give inaccurate microbiological assessment. We studied five patients in whom cement containing gentamicin had been used in the primary procedure. During revision hip replacement, samples of joint fluid, tissues and cement were taken both before and after disruption of the cement. With the exception of one sample of joint fluid, low concentrations of gentamicin were recorded in the samples taken before the cement was disrupted, but after disruption the specimens contained gentamicin at concentrations high enough to inhibit or prevent growth of sensitive organisms. The cement contained very high levels up to ten years after insertion. Our findings suggest that no reliance can be placed on the microbiological assessment of specimens taken once cement splitting has started and that specimens should therefore be taken as early as possible


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1143 - 1148
1 Sep 2006
Hallan G Aamodt A Furnes O Skredderstuen A Haugan K Havelin LI

We performed a randomised, radiostereometric study comparing two different bone cements, one of which has been sparsely clinically documented. Randomisation of 60 total hip replacements (57 patients) into two groups of 30 was undertaken. All the patients were operated on using a cemented Charnley total hip replacement, the only difference between groups being the bone cement used to secure the femoral component. The two cements used were Palamed G and Palacos R with gentamicin. The patients were followed up with repeated clinical and radiostereometric examinations for two years to assess the micromovement of the femoral component and the clinical outcome. The mean subsidence was 0.18 mm and 0.21 mm, and the mean internal rotation was 1.7° and 2.0° at two years for the Palamed G and Palacos R with gentamicin bone cements, respectively. We found no statistically significant differences between the groups. Micromovement occurred between the femoral component and the cement, while the cement mantle was stable inside the bone. The Harris hip score improved from a mean of 38 points (14 to 54) and 36 (10 to 57) pre-operatively to a mean of 92 (77 to 100) and 91 (63 to 100) at two years in the Palamed G and Palacos R groups, respectively. No differences were found between the groups. Both bone cements provided good initial fixation of the femoral component and good clinical results at two years


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 151 - 157
1 Jun 2020
Gil D Atici AE Connolly RL Hugard S Shuvaev S Wannomae KK Oral E Muratoglu OK

Aims. We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Methods. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement. Results. Gentamicin-loaded UHMWPE tibial components not only eradicated planktonic Staphylococcus aureus, but also prevented colonization of both femoral and tibial components. The proposed spacer possesses far superior mechanical and wear properties when compared with conventional bone cement spacers. Conclusion. The proposed gentamicin-eluting UHMWPE spacer can provide antibacterial efficacy comparable with currently used bone cement spacers, while overcoming their drawbacks. The novel spacer proposed here has the potential to drastically reduce complications associated with currently used bone cement spacers and substantially improve patients’ quality of life during the treatment. Cite this article: Bone Joint J 2020;102-B(6 Supple A):151–157


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 4 | Pages 493 - 494
1 Aug 1984
Fiddian N Sudlow R Browett J

Despite widespread use of gentamicin beads in the treatment of chronic infections of bone and soft tissue, no serious complications have been reported. This report describes a rupture of the femoral vein which occurred during the attempted removal of a chain of beads after radical excision of a chronically discharging Girdlestone arthroplasty. The patient later had a disarticulation at the hip. In the light of our experience with this and other cases we offer some suggestions as to the positioning of gentamicin beads, as well as the timing and method of their extraction


The Journal of Bone & Joint Surgery British Volume
Vol. 60-B, Issue 2 | Pages 270 - 275
1 May 1978
Wahlig H Dingeldein E Bergmann R Reuss K

Gentamicin incorporated in beads of polymethylmethacrylate has been shown capable of being released over a period of several months in concentrations sufficiently high to control most pathogens. The therapeutic efficacy of such beads has been demonstrated in a model of osteomyelitis of the femur in the dog. Good tolerance has been shown, both in the animal model and in tissue cultures. In forty-one patients with infection of either bone or soft tissue, mainly of the lower limb, the findings were similar. The concentrations in serum and urine were low, which excludes side-effects. The insertion of gentamicin-PMMA beads may prove to be a valuable new form of local antibiotic therapy


The Bone & Joint Journal
Vol. 99-B, Issue 1 | Pages 73 - 77
1 Jan 2017
Frew NM Cannon T Nichol T Smith TJ Stockley I

Aims

Vancomycin is commonly added to acrylic bone cement during revision arthroplasty surgery. Proprietary cement preparations containing vancomycin are available, but are significantly more expensive. We investigated whether the elution of antibiotic from ‘home-made’ cement containing vancomycin was comparable with more expensive commercially available vancomycin impregnated cement.

Materials and Methods

A total of 18 cement discs containing either proprietary CopalG+V; or ‘home-made’ CopalR+G with vancomycin added by hand, were made. Each disc contained the same amount of antibiotic (0.5 g gentamycin, 2 g vancomycin) and was immersed in ammonium acetate buffer in a sealed container. Fluid from each container was sampled at eight time points over a two-week period. The concentrations of gentamicin and vancomycin in the fluid were analysed using high performance liquid chromatography mass spectrometry.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 395 - 398
1 Mar 2014
Bailey O Torkington MS Anthony I Wells J Blyth M Jones B

The aim of this study was to determine if a change in antibiotic prophylaxis for routine hip and knee replacement was associated with an increased risk of acute renal impairment.

We identified 238 patients (128 knees and 110 hips) who had received a single prophylactic dose of 1.5 g cefuroxime before joint replacement. We compared them with prospectively collected data from 254 patients (117 knees and 137 hips) who received a single prophylactic dose of 2 g flucloxacillin and a height- and gender-determined dose of gentamicin. The primary outcome measure was any new renal impairment as graded by clinically validated criteria.

We identified four patients (1.69%) in the cefuroxime group who developed renal impairment. All four had mild impairment and all renal function was normal by the third post-operative day. The incidence of new-onset renal impairment was significantly higher in the flucloxacillin-and-gentamicin group at 9.45% (24 patients) (p < 0.001). Three of these patients remained with acute renal impairment after a week, although the serum creatinine levels in all subsequently returned to normal.

Cite this article: Bone Joint J 2014;96-B:395–8.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal stem cells adhered to the coated surfaces and differentiated towards osteoblasts, depositing calcium and expressing the bone marker protein, osteopontin. In the in vivo small animal bone healing model, the antibiotic sol-gel coated titanium (Ti)/HA rod led to osseointegration equivalent to that of the conventional HA-coated surface. Conclusion. In this study we report a new sol-gel technology that can release gentamicin from a bioceramic-coated cementless arthroplasty material. In vitro, local gentamicin levels are in excess of what can be achieved by antibiotic-loaded bone cement. In vivo, bone healing in an animal model is not impaired. This, thus, represents a biomaterial modification that may have the potential to protect at-risk patients from implant-related deep infection. Cite this article: Bone Joint J 2021;103-B(3):522–529


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1095 - 1100
1 Sep 2022
McNally MA Ferguson JY Scarborough M Ramsden A Stubbs DA Atkins BL

Aims. Excision of chronic osteomyelitic bone creates a dead space which must be managed to avoid early recurrence of infection. Systemic antibiotics cannot penetrate this space in high concentrations, so local treatment has become an attractive adjunct to surgery. The aim of this study was to present the mid- to long-term results of local treatment with gentamicin in a bioabsorbable ceramic carrier. Methods. A prospective series of 100 patients with Cierny-Mader Types III and IV chronic ostemyelitis, affecting 105 bones, were treated with a single-stage procedure including debridement, deep tissue sampling, local and systemic antibiotics, stabilization, and immediate skin closure. Chronic osteomyelitis was confirmed using strict diagnostic criteria. The mean follow-up was 6.05 years (4.2 to 8.4). Results. At final follow-up, six patients (six bones) had recurrent infection; thus 94% were infection-free. Three infections recurred in the first year, two in the second year, and one 4.5 years postoperatively. Recurrence was not significantly related to the physiological class of the patient (1/20 Class A (5%) vs 5/80 Class B (6.25%); p = 0.833), nor was it significantly related to the aetiology of the infection, the organisms which were cultured or the presence of nonunion before surgery (1/10 with nonunion (10%) vs 5/90 without nonunion (5.6%); p = 0.570). Organisms with intermediate or high-grade resistance to gentamicin were significantly more likely in polymicrobial infections (9/21; 42.8%) compared with monobacterial osteomyelitis (7/79 (8.9%); p < 0.001). However, recurrence was not significantly more frequent when a resistant organism was present (1/16 for resistant cases (6.25%) vs 5/84 in those with a microbiologically sensitive infection (5.95%); p = 0.958). Conclusion. We found that a single-stage protocol, including the use of a high-delivery local antibiotic ceramic carrier, was effective over a period of several years. The method can be used in a wide range of patients, including those with significant comorbidities and an infected nonunion. Cite this article: Bone Joint J 2022;104-B(9):1095–1100


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 163 - 169
1 Jun 2020
Lawrie CM Jo S Barrack T Roper S Wright RW Nunley RM Barrack RL

Aims. The aim of this study was to determine if the local delivery of vancomycin and tobramycin in primary total knee arthroplasty (TKA) can achieve intra-articular concentrations exceeding the minimum inhibitory concentration thresholds for bacteria causing acute prosthetic joint infection (PJI). Methods. Using a retrospective single-institution database of all primary TKAs performed between January 1 2014 and May 7 2019, we identified patients with acute PJI that were managed surgically within 90 days of the initial procedure. The organisms from positive cultures obtained at the time of revision were tested for susceptibility to gentamicin, tobramycin, and vancomycin. A prospective study was then performed to determine the intra-articular antibiotic concentration on postoperative day one after primary TKA using one of five local antibiotic delivery strategies with tobramycin and/or vancomycin mixed into the polymethylmethacrylate (PMMA) or vancomycin powder. Results. A total of 19 patients with acute PJI after TKA were identified and 29 unique bacterial isolates were recovered. The mean time to revision was 37 days (6 to 84). Nine isolates (31%) were resistant to gentamicin, ten (34%) were resistant to tobramycin, and seven (24%) were resistant to vancomycin. Excluding one Fusobacterium nucleatum, which was resistant to all three antibiotics, all isolates resistant to tobramycin or gentamicin were susceptible to vancomycin and vice versa. Overall, 2.4 g of tobramycin hand-mixed into 80 g of PMMA and 1 g of intra-articular vancomycin powder consistently achieved concentrations above the minimum inhibitory concentrations of susceptible organisms. Conclusion. One-third of bacteria causing acute PJI after primary TKA were resistant to the aminoglycosides commonly mixed into PMMA, and one-quarter were resistant to vancomycin. With one exception, all bacteria resistant to tobramycin were susceptible to vancomycin and vice versa. Based on these results, the optimal cover for organisms causing most cases of acute PJI after TKA can be achieved with a combination of tobramycin mixed in antibiotic cement, and vancomycin powder. Cite this article: Bone Joint J 2020;102-B(6 Supple A):163–169


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1519 - 1524
1 Nov 2015
Salih S Paskins A Nichol T Smith T Hamer A

We investigated whether the indentation of bone cement spacers used in revision of infected joint arthroplasty with a MacDonald dissector increased the elution of antibiotic in vitro. A total of 24 cement discs containing either 0.17 g (0.88% w/w), 0.25 g (1.41% w/w), or 0.33 g (1.75% w/w) gentamicin of constant size were made. Of these, 12 were indented with the dissector. Each disc was immersed in ammonium acetate buffer in a sealed container, and fluid from each container was sampled at zero, one, three, six, 24, 48 and 72 hours and at one, and two weeks. The concentration of gentamicin in the fluid was analysed using high performance liquid chromatography mass spectrometry. . The fluid sampled at 72 hours from the indented discs containing 0.17 g gentamicin (0.88% w/w) contained a mean of 113 mcg/ml (90.12 to 143.5) compared with 44.5 mcg/ml (44.02 to 44.90) in the fluid sampled from the plain discs (p = 0.012). In discs containing 0.33 g gentamicin (1.75% w/w), the concentration eluted from the indented discs at 72 hours was a mean of 316 mcg/ml (223 to 421) compared with a mean of 118 mcg/ml (100 to 140) from the plain discs (p < 0.001). . At two weeks, these significant differences persisted. At nine weeks the indented discs eluted a greater concentration for all gentamicin doses, but the difference was only significant for the discs containing 0.17 g (0.88% w/w, p = 0.006). However if the area under the curve is taken as a measure of the total antibiotic eluted, the indented discs eluted more gentamicin than the plain discs for the 0.17 g (0.88% w/w, p = 0.031), the 0.25 g (1.41% w/w, p < 0.001) and the 0.33 g (1.75% w/w, p < 0.001) discs. . When preparing antibiotic spacers for use in staged revision arthroplasty surgery we recommend indenting the spacer with a MacDonald dissector to increase the elution of antibiotic. Cite this article: Bone Joint J 2015;97-B:1519–24


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 272 - 276
1 Feb 2005
Hendriks JGE Neut D van Horn JR van der Mei HC Busscher HJ

Clinical experience indicates the beneficial effects of antibiotic-loaded bone cement. Although in vitro studies have shown the formation of a biofilm on its surface they have not considered the gap between the cement and the bone. We have investigated bacterial survival in that gap. Samples with gaps 200 μm wide were made of different bone cements. These were stored dry (‘pre-elution’) or submersed in phosphate-buffered saline to simulate the initial release of gentamicin (‘post-elution’). The gaps were subsequently inoculated with bacteria, which had been isolated from infected orthopaedic prostheses and assessed for their sensitivity to gentamicin. Bacterial survival was measured 24 hours after inoculation. All the strains survived in plain cements. In the pre-elution gentamicin-loaded cements only the most gentamicin-resistant strain, CN5115, survived, but in post-elution samples more strains did so, depending on the cement tested. Although high concentrations of gentamicin were demonstrated in the gaps only the gentamicin-sensitive strains were killed. This could explain the increased prevalence of gentamicin-resistant infections which are seen clinically


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 5 | Pages 643 - 647
1 May 2008
Bridgens J Davies S Tilley L Norman P Stockley I

Bone cements produced by different manufacturers vary in their mechanical properties and antibiotic elution characteristics. Small changes in the formulation of a bone cement, which may not be apparent to surgeons, can also affect these properties. The supplier of Palacos bone cement with added gentamicin changed in 2005. We carried out a study to examine the mechanical characteristics and antibiotic elution of Schering-Plough Palacos, Heraeus Palacos and Depuy CMW Smartset bone cements. Both Heraeus Palacos and Smartset bone cements performed significantly better than Schering-Plough Palacos in terms of mechanical characteristics, with and without additional vancomycin (p < 0.001). All cements show a deterioration in flexural strength with increasing addition of vancomycin, albeit staying above ISO minimum levels. Both Heraeus Palacos and Smartset elute significantly more gentamicin cumulatively than Schering-Plough Palacos. Smartset elutes significantly more vancomycin cumulatively than Heraeus Palacos. The improved antibiotic elution characteristics of Smartset and Heraeus Palacos are not associated with a deterioration in mechanical properties. Although marketed as the ‘original’ Palacos, Heraeus Palacos has significantly altered mechanical and antibiotic elution characteristics compared with the most commonly-used previous version


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 11 | Pages 1529 - 1536
1 Nov 2011
Galasso O Mariconda M Calonego G Gasparini G

Coloured bone cements have been introduced to make the removal of cement debris easier at the time of primary and revision joint replacement. We evaluated the physical, mechanical and pharmacological effects of adding methylene blue to bone cement with or without antibiotics (gentamicin, vancomycin or both). The addition of methylene blue to plain cement significantly decreased its mean setting time (570 seconds (. sd. 4) vs 775 seconds (. sd. 11), p = 0.01), mean compression strength (95.4 MPa (. sd. 3) vs 100.1 MPa (. sd.  6), p = 0.03), and mean bending strength (65.2 MPa (. sd. 5) vs 76.6 MPa (. sd. 4), p < 0.001) as well as its mean elastic modulus (2744 MPa (. sd. 97) vs 3281 MPa (. sd. 110), p < 0.001). The supplementation of the coloured cement with vancomycin and gentamicin decreased its mean bending resistance (55.7 MPa (. sd. 4) vs 65.2 MPa (. sd . 5), p < 0.001).The methylene blue significantly decreased the mean release of gentamicin alone (228.2 µg (. sd. 24) vs 385.5 µg (. sd . 26), p < 0.001) or in combination with vancomycin (498.5 µg (. sd. 70) vs 613 µg (. sd. 25), p = 0.018) from the bone cement. This study demonstrates several theoretical disadvantages of the antibiotic-loaded bone cement coloured with methylene blue


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1036 - 1039
1 Sep 2002
Tai CC Want S Quraishi NA Batten J Kalra M Hughes SPF

Antibiotics are often administrated prophylactically in spinal procedures to reduce the risk of infection of the disc space. It is still not known which antibiotics are able to penetrate the intervertebral disc effectively. In a prospective, randomised, double-blind clinical study, we examined the penetration of the intervertebral discs of two commonly used antibiotics, cefuroxime and gentamicin. The patients, randomised into two groups, received either 1.5 g of cefuroxime or 5 mg/kg of gentamicin prophylactically two hours before their intervertebral discs were removed. A specimen of blood, from which serum antibiotic levels were determined, was obtained at the time of discectomy. Therapeutic levels of antibiotic were detectable in the intervertebral discs of the ten patients who received gentamicin. Only two of the ten patients (20%) who received cefuroxime had a quantifiable level of antibiotic in their discs although therapeutic serum levels of cefuroxime were found in all ten patients. Our results show that cefuroxime does not diffuse into human intervertebral discs as readily as gentamicin. It is possible that the charge due to ionisable groups on the antibiotics can influence the penetration of the antibiotics. We therefore recommend the use of gentamicin in a single prophylactic dose for all spinal procedures in order to reduce the risk of discitis


The Journal of Bone & Joint Surgery British Volume
Vol. 66-B, Issue 2 | Pages 175 - 179
1 Mar 1984
Wahlig H Dingeldein E Buchholz H Buchholz M Bachmann F

A randomised, double-blind study was performed in two groups of 15 patients undergoing total hip replacements, using antibiotic-loaded acrylic cement containing 0.5 g and 1.0 g gentamicin base respectively per 40 g pack of powdered polymer. Postoperatively, the gentamicin levels in the blood, in the urine and in the wound drainage fluid were measured. In both groups of patients, the serum gentamicin concentrations were low whereas the wound drainage fluid contained highly effective antibacterial concentrations. Serum, urine and wound secretion levels showed approximately two-fold higher concentrations in the group of patients receiving the higher gentamicin load


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 4 | Pages 588 - 593
1 May 2003
Pickering SAW Bayston R Scammell BE

Infection of orthopaedic implants is a significant problem, with increased antibiotic resistance of adherent ‘biofilm’ bacteria causing difficulties in treatment. We have investigated the in vitro effect of a pulsed electromagnetic field (PEMF) on the efficacy of antibiotics in the treatment of infection of implants. Five-day biofilms of Staphylococcus epidermidis were grown on the tips of stainless-steel pegs. They were exposed for 12 hours to varying concentrations of gentamicin or vancomycin in microtitre trays at 37°C and 5% CO. 2. The test group were exposed to a PEMF. The control tray was not exposed to a PEMF. After exposure to antibiotic the pegs were incubated overnight, before standard plating onto blood agar for colony counting. Exposure to a PEMF increased the effectiveness of gentamicin against the five-day biofilms of Staphylococcus epidermidis. In three of five experiments there was reduction of at least 50% in the minimum biofilm inhibitory concentration. In a fourth experiment there was a two-log difference in colony count at 160 mg/l of gentamicin. Analysis of variance (ANOVA) confirmed an effect by a PEMF on the efficacy of gentamicin which was significant at p < 0.05. There was no significant effect with vancomycin


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 850 - 856
1 Aug 2023
Azamgarhi T Warren S Fouch S Standing JF Gerrand C

The recently published Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) trial found no benefit in extending antibiotic prophylaxis from 24 hours to five days after endoprosthetic reconstruction for lower limb bone tumours. PARITY is the first randomized controlled trial in orthopaedic oncology and is a huge step forward in understanding antibiotic prophylaxis. However, significant gaps remain, including questions around antibiotic choice, particularly in the UK, where cephalosporins are avoided due to concerns of Clostridioides difficile infection. We present a review of the evidence for antibiotic choice, dosing, and timing, and a brief description of PARITY, its implication for practice, and the remaining gaps in our understanding.

Cite this article: Bone Joint J 2023;105-B(8):850–856.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 4 | Pages 600 - 604
1 Jul 1992
Shinto Y Uchida A Korkusuz F Araki N Ono K

Porous blocks of calcium hydroxyapatite ceramic were evaluated as delivery systems for the sustained release of antibiotics. We tested gentamicin sulphate, cefoperazone sodium, and flomoxef sodium in powder form placed in a cylindrical cavity in calcium hydroxyapatite blocks, using in vitro studies of elution and in vivo studies in rats. Gentamicin sulphate gave a maximum concentration within the first week, which gradually decreased but was still effective at 12 weeks, when 70% of the antibiotic had been released. Even at this stage the antibiotic concentration from a 75 mg dose was five times the minimum inhibitory concentration for staphylococci. In the in vivo studies the release of gentamicin sulphate into the normal bone of rats was at similar rates and levels. The bacteriocidal activity of the drugs was not affected by packing into calcium hydroxyapatite ceramic and the blocks were completely biocompatible on histology. This new system overcomes the disadvantages of other drug delivery systems, avoiding thermal damage to the antibiotics and a second operation for the removal of the carrier. Some mechanical strength is provided by the ceramic and healing may be accelerated by bone ingrowth into its micropores