Bisphosphonates are widely used as first-line treatment for primary and secondary prevention of fragility fractures. Whilst they have proved effective in this role, there is growing concern over their long-term use, with much evidence linking bisphosphonate-related suppression of bone remodelling to an increased risk of atypical subtrochanteric fractures of the femur (AFFs). The objective of this article is to review this evidence, while presenting the current available strategies for the management of AFFs. We present an evaluation of current literature relating to the pathogenesis and treatment of AFFs in the context of bisphosphonate use.Objectives
Methods
We wished to assess the feasibility of a future randomised controlled
trial of parathyroid hormone (PTH) supplements to aid healing of
trochanteric fractures of the hip, by an open label prospective
feasibility and pilot study with a nested qualitative sub study.
This aimed to inform the design of a future powered study comparing
the functional recovery after trochanteric hip fracture in patients
undergoing standard care, We undertook a pilot study comparing the functional recovery
after trochanteric hip fracture in patients 60 years or older, admitted
with a trochanteric hip fracture, and potentially eligible to be
randomised to either standard care or the administration of subcutaneous
PTH for six weeks. Our desired outcomes were functional testing
and measures to assess the feasibility and acceptability of the
study.Aims
Patients and Methods
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods