Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials. A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.Aims
Methods
To systematically review the predominant complication rates and changes to patient-reported outcome measures (PROMs) following osteochondral allograft (OCA) transplantation for shoulder instability. This systematic review, following PRISMA guidelines and registered in PROSPERO, involved a comprehensive literature search using PubMed, Embase, Web of Science, and Scopus. Key search terms included “allograft”, “shoulder”, “humerus”, and “glenoid”. The review encompassed 37 studies with 456 patients, focusing on primary outcomes like failure rates and secondary outcomes such as PROMs and functional test results.Aims
Methods