Objective. Cement thickness of at least 2 mm is generally associated with more favorable results for the femoral component in cemented hip arthroplasty. However, French-designed stems have shown favorable outcomes even with thin cement mantle. The biomechanical behaviors of a French stem, Charnley-Marcel-Kerboull (CMK) and cement were researched in this study. Methods. Six polished CMK stems were implanted into a composite femur, and one million times dynamic loading tests were performed. Stem subsidence and the compressive force at the bone-cement interface were measured. Tantalum ball (ball) migration in the cement was analyzed by micro CT. Results. The cement thickness of 95 % of the proximal and middle region was less than 2.5 mm. A small amount of stem subsidence was observed even with collar contact. The greatest compressive force was observed at the proximal medial region and significant positive correlation was observed between stem subsidence and compressive force. 9 of 11 balls in the medial region moved to the horizontal direction more than that of the perpendicular direction. The amount of ball movement distance in the perpendicular direction was 59 to 83% of the stem subsidence, which was thought to be slip in the cement of the