header advert
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 9, Issue 8 | Pages 493 - 500
1 Aug 2020
Fletcher JWA Zderic I Gueorguiev B Richards RG Gill HS Whitehouse MR Preatoni E

Aims

To devise a method to quantify and optimize tightness when inserting cortical screws, based on bone characterization and screw geometry.

Methods

Cortical human cadaveric diaphyseal tibiae screw holes (n = 20) underwent destructive testing to firstly establish the relationship between cortical thickness and experimental stripping torque (Tstr), and secondly to calibrate an equation to predict Tstr. Using the equation’s predictions, 3.5 mm screws were inserted (n = 66) to targeted torques representing 40% to 100% of Tstr, with recording of compression generated during tightening. Once the target torque had been achieved, immediate pullout testing was performed.


Bone & Joint Research
Vol. 8, Issue 12 | Pages 573 - 581
1 Dec 2019
de Quadros VP Tobar N Viana LR dos Santos RW Kiyataka PHM Gomes-Marcondes MCC

Objectives

Insufficient protein ingestion may affect muscle and bone mass, increasing the risk of osteoporotic fractures in the elderly, and especially in postmenopausal women. We evaluated how a low-protein diet affects bone parameters under gonadal hormone deficiency and the improvement led by hormone replacement therapy (HRT) with 17β-oestradiol.

Methods

Female Wistar rats were divided into control (C), ovariectomized (OVX), and 17β-oestradiol-treated ovariectomized (OVX-HRT) groups, which were fed a control or an isocaloric low-protein diet (LP; 6.6% protein; seven animals per group). Morphometric, serum, and body composition parameters were assessed, as well as bone parameters, mechanical resistance, and mineralogy.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 501 - 507
1 Aug 2018
Phan C Nguyen D Lee KM Koo S

Objectives

The objective of this study was to quantify the relative movement between the articular surfaces in the tibiotalar and subtalar joints during normal walking in asymptomatic individuals.

Methods

3D movement data of the ankle joint complex were acquired from 18 subjects using a biplanar fluoroscopic system and 3D-to-2D registration of bone models obtained from CT images. Surface relative velocity vectors (SRVVs) of the articular surfaces of the tibiotalar and subtalar joints were calculated. The relative movement of the articulating surfaces was quantified as the mean relative speed (RS) and synchronization index (SIENT) of the SRVVs.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 580 - 586
1 Oct 2018
Xie S Manda K Pankaj P

Aims

Loosening is a well-known complication in the fixation of fractures using devices such as locking plates or unilateral fixators. It is believed that high strains in the bone at the bone-screw interface can initiate loosening, which can result in infection, and further loosening. Here, we present a new theory of loosening of implants. The time-dependent response of bone subjected to loads results in interfacial deformations in the bone which accumulate with cyclical loading and thus accentuates loosening.

Methods

We used an ‘ideal’ bone-screw system, in which the screw is subjected to cyclical lateral loads and trabecular bone is modelled as non-linear viscoelastic and non-linear viscoelastic-viscoplastic material, based on recent experiments, which we conducted.


Objectives

Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs.

Methods

Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests.