Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Bone & Joint Open
Vol. 2, Issue 1 | Pages 58 - 65
22 Jan 2021
Karssiens TJ Gill JR Sunil Kumar KH Sjolin SU

Aims

The Mathys Affinis Short is the most frequently used stemless total shoulder prosthesis in the UK. The purpose of this prospective cohort study is to report the survivorship, clinical, and radiological outcomes of the first independent series of the Affinis Short prosthesis.

Methods

From January 2011 to January 2019, a total of 141 Affinis Short prostheses were implanted in 127 patients by a single surgeon. Mean age at time of surgery was 68 (44 to 89). Minimum one year and maximum eight year follow-up (mean 3.7 years) was analyzed using the Oxford Shoulder Score (OSS) at latest follow-up. Kaplan-Meier survivorship analysis was performed with implant revision as the endpoint. Most recently performed radiographs were reviewed for component radiolucent lines (RLLs) and proximal humeral migration.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives

The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo.

Methods

Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.