Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 1, Issue 11 | Pages 683 - 690
1 Nov 2020
Khan SA Asokan A Handford C Logan P Moores T

Background. Due to the overwhelming demand for trauma services, resulting from increasing emergency department attendances over the past decade, virtual fracture clinics (VFCs) have become the fashion to keep up with the demand and help comply with the BOA Standards for Trauma and Orthopaedics (BOAST) guidelines. In this article, we perform a systematic review asking, “How useful are VFCs?”, and what injuries and conditions can be treated safely and effectively, to help decrease patient face to face consultations. Our primary outcomes were patient satisfaction, clinical efficiency and cost analysis, and clinical outcomes. Methods. We performed a systematic literature search of all papers pertaining to VFCs, using the search engines PubMed, MEDLINE, and the Cochrane Database, according to the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) checklist. Searches were carried out and screened by two authors, with final study eligibility confirmed by the senior author. Results. In total, 21 records were relevant to our research question. Six orthopaedic injuries were identified as suitable for VFC review, with a further four discussed in detail. A reduction of face to face appointments of up to 50% was reported with greater compliance to BOAST guidelines (46.4%) and cost saving (up to £212,000). Conclusions. This systematic review demonstrates that the VFC model can help deliver a safe, more cost-effective, and more efficient arm of the trauma service to patients. Cite this article: Bone Joint Open 2020;1-11:683–690


Bone & Joint Open
Vol. 5, Issue 5 | Pages 374 - 384
1 May 2024
Bensa A Sangiorgio A Deabate L Illuminati A Pompa B Filardo G

Aims

Robotic-assisted unicompartmental knee arthroplasty (R-UKA) has been proposed as an approach to improve the results of the conventional manual UKA (C-UKA). The aim of this meta-analysis was to analyze the studies comparing R-UKA and C-UKA in terms of clinical outcomes, radiological results, operating time, complications, and revisions.

Methods

The literature search was conducted on three databases (PubMed, Cochrane, and Web of Science) on 20 February 2024 according to the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Inclusion criteria were comparative studies, written in the English language, with no time limitations, on the comparison of R-UKA and C-UKA. The quality of each article was assessed using the Downs and Black Checklist for Measuring Quality.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.