Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 5, Issue 4 | Pages 335 - 342
19 Apr 2024
Athavale SA Kotgirwar S Lalwani R

Aims

The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD.

Methods

The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted.


Bone & Joint Research
Vol. 1, Issue 6 | Pages 99 - 103
1 Jun 2012
Mason LW Tanaka H

Introduction

The aetiology of hallux valgus is almost certainly multifactoral. The biomechanics of the first ray is a common factor to most. There is very little literature examining the anatomy of the proximal metatarsal articular surface and its relationship to hallux valgus deformity.

Methods

We examined 42 feet from 23 specimens in this anatomical dissection study.


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective

The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing.

Methods

CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint.