Advertisement for orthosearch.org.uk
Results 1 - 20 of 79
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims

The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis.

Methods

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 764 - 778
12 Dec 2024
Huang Q Zhuo Y Duan Z Long Y Wang J Zhang Z Fan S Huang Y Deng K Xin H

Aims

Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application.

Methods

In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims. Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results. We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion. PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation. Cite this article: Bone Joint Res 2024;13(11):659–672


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 321 - 331
3 Jul 2024
Naito T Yamanaka Y Tokuda K Sato N Tajima T Tsukamoto M Suzuki H Kawasaki M Nakamura E Sakai A

Aims

The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice.

Methods

Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a diagnostic value of serum COMP as a biomarker of knee OA (41.64 ng/ml, area under the curve (AUC) = 1.00), with a sensitivity of 99.6% and a specificity of 100.0%. Further analysis uncovered that COMP mRNA expression was markedly upregulated in the inflamed synovium of knee OA, consistent with immunohistochemical staining revealing localization of COMP protein in the lining and sub-lining layers of knee OA inflamed synovium. Most notably, relative COMP mRNA expression in knee OA synovium was positively associated with its protein levels in serum and synovial fluid of knee OA patients. In human knee OA FLSs activated with tumour necrosis factor-alpha, COMP mRNA expression was considerably up-regulated in a time-dependent manner. Conclusion. All results indicate that COMP might serve as a supportive diagnostic marker for knee OA in conjunction with the standard diagnostic methods. Cite this article: Bone Joint Res 2024;13(6):261–271


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 12, Issue 12 | Pages 702 - 711
1 Dec 2023
Xue Y Zhou L Wang J

Aims

Knee osteoarthritis (OA) involves a variety of tissues in the joint. Gene expression profiles in different tissues are of great importance in order to understand OA.

Methods

First, we obtained gene expression profiles of cartilage, synovium, subchondral bone, and meniscus from the Gene Expression Omnibus (GEO). Several datasets were standardized by merging and removing batch effects. Then, we used unsupervised clustering to divide OA into three subtypes. The gene ontology and pathway enrichment of three subtypes were analyzed. CIBERSORT was used to evaluate the infiltration of immune cells in different subtypes. Finally, OA-related genes were obtained from the Molecular Signatures Database for validation, and diagnostic markers were screened according to clinical characteristics. Quantitative reverse transcription polymerase chain reaction (qRT‐PCR) was used to verify the effectiveness of markers.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims. Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis. Methods. Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action. Results. In the LPS-induced bone loss mouse model, the levels of IL-19 in peripheral blood serum and femoral bone marrow suspension were significantly increased. The in vivo results indicated that global IL-19 deletion had no significant effect on RANKL content in the serum and bone marrow, but could increase the content of OPG in serum and femoral bone marrow, suggesting that IL-19 inhibits OPG expression in bone marrow mesenchymal stem cells (BMSCs) and thus increases bone resorption. Conclusion. IL-19 promotes bone resorption by suppressing OPG expression in BMSCs in a LPS-induced bone loss mouse model, which highlights the potential benefits and side effects of IL-19 for future clinical applications. Cite this article: Bone Joint Res 2023;12(11):691–701


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 486 - 493
4 Aug 2023
Yamanaka Y Tajima T Tsujimura Y Naito T Mano Y Tsukamoto M Zenke Y Sakai A

Aims

Dupuytren’s contracture is characterized by increased fibrosis of the palmar aponeurosis, with eventual replacement of the surrounding fatty tissue with palmar fascial fibromatosis. We hypothesized that adipocytokines produced by adipose tissue in contact with the palmar aponeurosis might promote fibrosis of the palmar aponeurosis.

Methods

We compared the expression of the adipocytokines adiponectin and leptin in the adipose tissue surrounding the palmar aponeurosis of male patients with Dupuytren’s contracture, and of male patients with carpal tunnel syndrome (CTS) as the control group. We also examined the effects of adiponectin on fibrosis-related genes and proteins expressed by fibroblasts in the palmar aponeurosis of patients with Dupuytren’s contracture.


Aims

Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation.

Methods

Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 455 - 466
1 Aug 2023
Zhou H Chen C Hu H Jiang B Yin Y Zhang K Shen M Wu S Wang Z

Aims

Rotator cuff muscle atrophy and fatty infiltration affect the clinical outcomes of rotator cuff tear patients. However, there is no effective treatment for fatty infiltration at this time. High-intensity interval training (HIIT) helps to activate beige adipose tissue. The goal of this study was to test the role of HIIT in improving muscle quality in a rotator cuff tear model via the β3 adrenergic receptor (β3AR).

Methods

Three-month-old C57BL/6 J mice underwent a unilateral rotator cuff injury procedure. Mice were forced to run on a treadmill with the HIIT programme during the first to sixth weeks or seventh to 12th weeks after tendon tear surgery. To study the role of β3AR, SR59230A, a selective β3AR antagonist, was administered to mice ten minutes before each exercise through intraperitoneal injection. Supraspinatus muscle, interscapular brown fat, and inguinal subcutaneous white fat were harvested at the end of the 12th week after tendon tear and analyzed biomechanically, histologically, and biochemically.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 375 - 386
12 Jun 2023
Li Z

Aims. Long non-coding RNAs (lncRNAs) act as crucial regulators in osteoporosis (OP). Nonetheless, the effects and potential molecular mechanism of lncRNA PCBP1 Antisense RNA 1 (PCBP1-AS1) on OP remain largely unclear. The aim of this study was to explore the role of lncRNA PCBP1-AS1 in the pathogenesis of OP. Methods. Using quantitative real-time polymerase chain reaction (qRT-PCR), osteogenesis-related genes (alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2)), PCBP1-AS1, microRNA (miR)-126-5p, group I Pak family member p21-activated kinase 2 (PAK2), and their relative expression levels were determined. Western blotting was used to examine the expression of PAK2 protein. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. To examine the osteogenic differentiation, Alizarin red along with ALP staining was used. RNA immunoprecipitation assay and bioinformatics analysis, as well as a dual-luciferase reporter, were used to study the association between PCBP1-AS1, PAK2, and miR-126-5p. Results. The expression of PCBP1-AS1 was pre-eminent in OP tissues and decreased throughout the development of human bone marrow-derived mesenchymal stem cells (hBMSCs) into osteoblasts. PCBP1-AS1 knockdown and overexpression respectively promoted and suppressed hBMSC proliferation and osteogenic differentiation capacity. Mechanistically, PCBP1-AS1 sponged miR-126-5p and consequently targeted PAK2. Inhibiting miR-126-5p significantly counteracted the beneficial effects of PCBP1-AS1 or PAK2 knockdown on hBMSCs’ ability to differentiate into osteoblasts. Conclusion. PCBP1-AS1 is responsible for the development of OP and promotes its progression by inducing PAK2 expression via competitively binding to miR-126-5p. PCBP1-AS1 may therefore be a new therapeutic target for OP patients. Cite this article: Bone Joint Res 2023;12(6):375–386


Bone & Joint Research
Vol. 12, Issue 5 | Pages 339 - 351
23 May 2023
Tan J Liu X Zhou M Wang F Ma L Tang H He G Kang X Bian X Tang K

Aims

Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing.

Methods

A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 274 - 284
11 Apr 2023
Du X Jiang Z Fang G Liu R Wen X Wu Y Hu S Zhang Z

Aims

This study aimed to investigate the role and mechanism of meniscal cell lysate (MCL) in fibroblast-like synoviocytes (FLSs) and osteoarthritis (OA).

Methods

Meniscus and synovial tissue were collected from 14 patients with and without OA. MCL and FLS proteins were extracted and analyzed by liquid chromatography‒mass spectrometry (LC‒MS). The roles of MCL and adenine nucleotide translocase 3 (ANT3) in FLSs were examined by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, and transmission electron microscopy. Histological analysis was performed to determine ANT3 expression levels in a male mouse model.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 219 - 230
10 Mar 2023
Wang L Li S Xiao H Zhang T Liu Y Hu J Xu D Lu H

Aims. It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. Methods. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Results. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned media from mechanically stimulated BMDMs (MS-CM) enhanced MSC chondrogenic differentiation, and mechanically stimulated BMDMs generated more TGF-β1. Further, neutralizing TGF-β1 in MS-CM can attenuate its pro-chondrogenic effect. In vivo, mechanical stimulation promoted TGF-β1 generation, MSC chondrogenesis, and T-B healing, which were abolished following macrophage depletion. Conclusion. Macrophages subjected to appropriate mechanical stimulation could polarize toward the M2 phenotype and secrete TGF-β1 to promote MSC chondrogenesis, which subsequently augments T-B healing. Cite this article: Bone Joint Res 2023;12(3):219–230