Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms. From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed.Aims
Methods
Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process. Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 μg/kg/day or 40 μg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone.Aims
Methods
Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between Aims
Methods
Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear. Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools.Aims
Methods
Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction.Introduction
Materials and Methods
Augmented glenoid implants provide a new avenue to correct glenoid bone loss and can possibly reconcile current prosthetic failures and improve long-term performance. Biomechanical implant studies have suggested benefits from augmented glenoid components but limited evidence exists on optimal design of these augmented glenoid components. The aim of this study was to use integrated kinematic finite element analysis (FEA) model to evaluate the optimal augmented glenoid design based on biomechanical performance in extreme conditions for failure. Computer aided design software (CAD) models of two different commercially available augmented glenoid designs - wedge (Equinox®, Exactech, Inc.) and step (Steptech®, Depuy Synthes) were created per precise manufacturer's dimensions and sizes of the implants. Using FE modeling, these implants were virtually implanted to correct 20° of glenoid retroversion. Two glenohumeral radial mismatches (RM) (3.5/4mm and 10 mm) were evaluated for joint stability and implant fixation to simulate high risk conditions for failure. The following variables were recorded: glenohumeral force ratio, relative micromotion (distraction, translation and compression), and stress on the implant and at the cement mantle interface.Introduction
Materials and Methods
Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The goal of this study was to identify the optimal augmented glenoid design based on finite element model analysis which will provide key insights into implant loosening mechanisms and stability. Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral contact pressure, the cement stress, the shear stress, and relative micromotions at the bone cement interface.Introduction
Materials and Methods