Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Bone & Joint Research
Vol. 10, Issue 2 | Pages 96 - 104
28 Jan 2021
Fang X Zhang L Cai Y Huang Z Li W Zhang C Yang B Lin J Wahl P Zhang W

Aims

Microbiological culture is a key element in the diagnosis of periprosthetic joint infection (PJI). However, cultures of periprosthetic tissue do not have optimal sensitivity. One of the main reasons for this is that microorganisms are not released from the tissues, either due to biofilm formation or intracellular persistence. This study aimed to optimize tissue pretreatment methods in order to improve detection of microorganisms.

Methods

From December 2017 to September 2019, patients undergoing revision arthroplasty in a single centre due to PJI and aseptic failure (AF) were included, with demographic data and laboratory test results recorded prospectively. Periprosthetic tissue samples were collected intraoperatively and assigned to tissue-mechanical homogenization (T-MH), tissue-manual milling (T-MM), tissue-dithiothreitol (T-DTT) treatment, tissue-sonication (T-S), and tissue-direct culture (T-D). The yield of the microbial cultures was then analyzed.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 675 - 688
1 Oct 2020
Shao L Gou Y Fang J Hu Y Lian Q Zhang Y Wang Y Tian F Zhang L

Aims

Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process.

Methods

Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 μg/kg/day or 40 μg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims

Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD.

Methods

The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection.


Bone & Joint Research
Vol. 9, Issue 3 | Pages 130 - 138
1 Mar 2020
Qi X Yu F Wen Y Li P Cheng B Ma M Cheng S Zhang L Liang C Liu L Zhang F

Aims

Osteoarthritis (OA) is the most prevalent joint disease. However, the specific and definitive genetic mechanisms of OA are still unclear.

Methods

Tissue-related transcriptome-wide association studies (TWAS) of hip OA and knee OA were performed utilizing the genome-wide association study (GWAS) data of hip OA and knee OA (including 2,396 hospital-diagnosed hip OA patients versus 9,593 controls, and 4,462 hospital-diagnosed knee OA patients versus 17,885 controls) and gene expression reference to skeletal muscle and blood. The OA-associated genes identified by TWAS were further compared with the differentially expressed genes detected by the messenger RNA (mRNA) expression profiles of hip OA and knee OA. Functional enrichment and annotation analysis of identified genes was performed by the DAVID and FUMAGWAS tools.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 81 - 81
1 Apr 2018
Sabesan V Whaley J Lima D Villa J Pathak V Zhang L
Full Access

Introduction

Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. The excessive retroversion can affect implant stability, eccentric glenoid loading, and fixation stresses. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The objective of this study was to identify the optimal augmented glenoid design based on finite element analysis (FEA) modeling which will provide key insights into implant loosening mechanisms and stability.

Materials and Methods

Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implant CAD models were created per precise manufacturers dimensions and sizes of the augmented implant designs. These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral subluxation force, relative micromotion at the bone-cement interface the glenoid, implant and cement mantle stress levels. The FEA model was then utilized to make measurements while the simulating abduction with the different implant designs. The biomechanical response parameters were compared between the models at comparable retroversion correction.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 82 - 82
1 Apr 2018
Sabesan V Lima D Whaley J Pathak V Villa J Zhang L
Full Access

Introduction

Augmented glenoid implants provide a new avenue to correct glenoid bone loss and can possibly reconcile current prosthetic failures and improve long-term performance. Biomechanical implant studies have suggested benefits from augmented glenoid components but limited evidence exists on optimal design of these augmented glenoid components. The aim of this study was to use integrated kinematic finite element analysis (FEA) model to evaluate the optimal augmented glenoid design based on biomechanical performance in extreme conditions for failure.

Materials and Methods

Computer aided design software (CAD) models of two different commercially available augmented glenoid designs - wedge (Equinox®, Exactech, Inc.) and step (Steptech®, Depuy Synthes) were created per precise manufacturer's dimensions and sizes of the implants. Using FE modeling, these implants were virtually implanted to correct 20° of glenoid retroversion. Two glenohumeral radial mismatches (RM) (3.5/4mm and 10 mm) were evaluated for joint stability and implant fixation to simulate high risk conditions for failure. The following variables were recorded: glenohumeral force ratio, relative micromotion (distraction, translation and compression), and stress on the implant and at the cement mantle interface.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 71 - 71
1 Dec 2017
Sabesan V Whaley J Pathak V Zhang L
Full Access

Introduction

Varying degrees of posterior glenoid bone loss occurs in patients with end stage osteoarthritis and can result in increased glenoid retroversion. Ultimately, the goal is to correct retroversion to restore normal biomechanics of the glenohumeral joint. The goal of this study was to identify the optimal augmented glenoid design based on finite element model analysis which will provide key insights into implant loosening mechanisms and stability.

Materials and Methods

Two different augmented glenoid designs, posterior wedge and posterior step- were created as a computer model by a computer aided design software (CAD). These implants were virtually implanted to correct 20° glenoid retroversion and the different mechanical parameters were calculated including: the glenohumeral contact pressure, the cement stress, the shear stress, and relative micromotions at the bone cement interface.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 273 - 273
1 Jul 2011
Townley J Whyne C Hardisty MR Zhang L Clemons M Yee AJ
Full Access

Purpose: To identify local and systemic risk factors for the development of pathologic fractures and determine the value of the Tokuhashi Score in patients with known asymptomatic lytic spinal metastases secondary to breast cancer.

Method: A prospective cohort study was carried out on 51 patients with lytic spinal metastases secondary to breast cancer identified as having either purely lytic or mixed disease. The Tokuhashi Score, developed to estimate life expectancy for patients with symptomatic spinal metastases being considered for surgery, was calculated for each of the 51 patients. The score consists of six parameters each of which is rated from 0–2. Initial and follow up CT images and pain and function data were obtained every four months for one year. A final review of patient charts was performed two years later to determine if each patient was still alive.

Results: Tumour burden was predominantly blastic and mixed rather than lytic. There was no progression of lytic tumour burden over the 12-month period, however there was progression of blastic tumour load. Eleven compression fractures occurred in seven patients; no burst fractures occurred during the study. No correlation between tumour burden (lytic, blastic or both) and risk of fracture was found. A weak correlation between bone mineral density and length of time elapsed from diagnosis of metastatic disease and fracture risk was found. Pain and functional data results were not related to tumour load. Tokuhashi score did correlate with survival, however actual survival in our population was far longer than that found in previous studies. Negative progesterone status was found to be negatively associated with life expectancy.

Conclusion: Metastatic vertebral disease in breast cancer patients has a predominantly blastic and mixed appearance with current pharmacologic therapies. Pathologic fracture risk appears to be more related to bone mineral density than tumour burden in this population. Tokuhashi score does correlate with life expectancy in patients with relatively asymptomatic spinal metastases. Having a progesterone receptor negative tumour has a significantly negative impact on life expectancy.