Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 35 - 35
1 Sep 2012
Lo V Akens M Wise-Milestone L Yee A Wilson B Whyne CM
Full Access

Purpose

Maintenance of vertebral mechanical stability is of paramount importance to prevent pathologic fractures and resultant neurologic compromise in individuals with spinal metastases. Current non-surgical treatments for vertebral metastases (i.e. chemotherapy, bisphophonates (BP) and radiation) yield variable responses in the tumour and surrounding bone. Photodynamic therapy (PDT) is a novel, minimally-invasive technology that utilizes a drug activated by light at a specific non-thermal wavelength to locally destroy tumour cells. Previously, we observed that PDT can ablate cancer cells within bone and yield short-term (1-week) improvements in vertebral architecture and biomechanical strength, particularly when combined with BP therapy. This study aims to evaluate the effects of PDT in vertebral bone over a longer (6-week) time period, alone and combined with previous BP treatment, to determine if improvements in skeletal architecture and strength are maintained.

Method

Fourty healthy rnu/rnu rats were randomly assigned to four treatment groups: (i) untreated control, (ii) BP only, (iii) PDT only and (iv) PDT following BP. BP treatments were administered on day 0 via subcutaneous injection of zoledronic acid. PDT was administered on day 7 via an intravenous injection of BPD-MA photosensitizer. A flat-cut optical fiber was inserted percutaneously adjacent to lumbar vertebra L2. After a 15-minute drug-light interval, 75J of light energy was delivered from a 690nm laser. Six weeks later, animals were euthanized. Structural properties of excised L2 vertebral bodies were quantified through semi-automated analysis of micro-CT images. In of the specimens, mechanical properties were evaluated by loading the L2 vertebral body to failure in axial compression. The remaining L2 vertebrae were analyzed for morphology, osteoid formation and osteoclast activity using histological methods.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 39 - 39
1 Sep 2012
Hojjat S Wise-Milestone L Whyne CM
Full Access

Purpose

To develop a low complexity highly-automated multimodal approach to segment vertebral structure and quantify mixed osteolytic/osteoblastic metastases in the rat spine using a combination of CT and MR imaging. We hypothesize that semi-automated multimodal analysis applied to 3D CT and MRI reconstructions will yield accurate and repeatable quantification of whole vertebrae affected by mixed metastases.

Method

Mixed spinal metastases were developed via intra-cardiac injection of canine Ace-1 luciferase transfected prostate cancer cells in a 3 week old rnu/rnu rat. Two sequential MR images of the L1-L3 vertebral motion segments were acquired using a 1H quadrature customized birdcage coil at 60 m isotropic voxel size followed by CT imaging at a 14m isotropic voxel size. The first MR image was T1 weighted to highlight the trabecular structure to ensure accurate registration with the CT image. The second MR image was T2 weighted to optimize differentiation between bone marrow and osteolytic tumour tissue. Samples were then processed for undecalcified histology and stained with Goldners Trichrome to identify mineralized bone and unmineralized new bone formation.

All images were resampled to 34.9 m and manually aligned to a global axis. This was followed by an affine registration using a Quasi Newton optimizer and a Normalized Mutual Information metric to ensure accurate registration. The whole individual vertebrae and their trabecular centrums were then segmented from the CT images using an extended version of a previously developed atlas based registration algorithm. An intensity-based thresholding method was used to segment the regions corresponding to osteoblastic tumor predominantly attached to the outside of the cortical shell. The whole vertebral segmentation from the CT was warped around the T2 weighted MR to define the bone boundaries. An intensity-based thresholding approach was then applied to the T2 weighted MR segment the osteolytic tumor.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 563 - 563
1 Nov 2011
Akens MK Won E Wise-Milestone L Wilson BC Yee AJ Whyne CM
Full Access

Purpose: Bony metastases in vertebrae secondary to breast cancer can result in osteolysis and an increase in skeletal related events. Bisphosphonates (BP) are the current standard of care for breast cancer patients with skeletal disease. Photodynamic therapy (PDT) is a non-radiative treatment, which has been successfully applied to various malignancies and shown to successfully ablate vertebral human breast cancer (MT1) metastases in a murine model. Previous in-vitro study has shown that pre-treatment of MT-1 cells with the BP zoledronic acid (Zometa®) renders them more susceptible to PDT. The aim of this study was to evaluate the influence of pre-treatment with BPs on the effect of PDT treatment on tumour ablation in metastatically involved vertebrae in vivo.

Method: Metastases were induced in fourteen 5–6 weeks old female athymic rats (Hsd:RH-Foxn1rnu) by intra-cardiac injection of 2x10^6 MT-1 cells. Four groups were formed:

control, no treatment;

BP only;

PDT only;

BP and PDT combined.

Seven days after MT-1 injection 60 μg/kg of zoledronic acid was injected. PDT treatment was administered on day 14 using the photosensitizer BPD-MA (1.0 mg/kg; Visudyne). Fifteen minutes later, laser-light (690nm; 75J) was administered to the lumbar vertebrae. The rats were euthanized 7 days after PDT treatment. A total of 45 vertebrae were evaluated using a histomorphometric program (GENIE™, Aperio) to assess tumour burden. Statistical analyses were performed using a one-way ANOVA with a Tukey post hoc test. A p-value p< .05 was considered to be statistically significant..

Results: The total The total tumour burden within vertebrae of rats pre-treated with BP and/or PDT was significantly lower compared to the control rats (p< .001). In addition, the PDT alone treated group demonstrated significantly less tumour burden than the combined BP+PDT group. In the control and BP-only groups, large tumours were found to include regions of necrosis. The PDT treatment groups (PDT and BP+PDT) exhibited areas of necrosis throughout the entire vertebral bodies with adjacent formation of granulation tissue.

Conclusion: BP, PDT and combined BP+PDT treatments resulted in a lower overall tumour burden at day 21 post MT-1 cell injection compared to control rats. A surprising increased level of tumour burden was found in comparing the combined treatment group to the PDT-only group. These findings are in contrast to previous in-vitro results, where the pre-treatment with BPs made the cells more susceptible to PDT. Pre-treatment with BP affects both the bone and tumour cells, and as such may induce different cellular pathways in response to PDT treatment. However, the ability of PDT applied at day 14 to cause a similar reduction in tumour burden compared to BP treatment at day 7, suggests its ability to rapidly and effectively ablate the tumour within the bone, even in the presence of BP.