To evaluate the effects of 6 and 18 months of abaloparatide (ABL) compared with placebo (PBO) on bone mineral density (BMD) in the acetabular regions of postmenopausal women with osteoporosis (OP). Acetabular bone loss, as may occur in OP, increases risk of acetabular fragility fracturesa. In total hip arthroplasty (THA), low acetabular BMD adversely affects primary stability, osseointegration, and migration of acetabular cups.c ABL is an osteoanabolic agent for the treatment of men and postmenopausal women with OP at high risk for fracture. Effects of ABL on acetabular BMD are unknown. Hip DXA scans were obtained at baseline, 6, and 18 months from a random subgroup of postmenopausal women (aged 49–86 y) from the phase 3 ACTIVE trial randomized to either ABL 80 µg/d or PBO (n=250/group). Anatomical landmarks were identified in each DXA scan to virtually place a hemispherical shell model of an acetabular cup and define regions of interest corresponding to DeLee & Charnley zones 1 (R1), 2 (R2), and 3 (R3). BMD changes compared to baseline were calculated for each zone. Statistical BMD in all zones were similar at baseline in the ABL and PBO groups. BMD significantly increased in the ABL group at 6 and 18 months compared with PBO (all ABL treatment resulted in rapid and progressive increases in BMD of all 3 acetabular zones. Increasing acetabular BMD has the potential to improve acetabular strength, which may reduce risk of acetabular fragility fractures. In bone health optimization prior to THA, increased acetabular BMD via ABL may provide better primary stability and longevity of acetabular cups in postmenopausal women with OP.
To compare the volume of acetabular bone resection after primary hip arthroplasty with different cup designs and technique of implantation using a computer model. The factors influencing acetabular bone resection during acetabular cup implantation in THA or hip resurfacing (SRA) include the design of the component and technique of implantation. The impact of these variables on bone resection was simulated with a computer model. A 3-D pelvis was reconstructed from CT scan images. The bony acetabulum circumference was 52.5mm. Implantation of pressfit acetabular component sustaining angles of 165°, 170° and 180° with different wall thicknesses (3.5, 4.0, 5.0mm) at various depths was simulated. Bone loss of 2742mm3 was calculated for the 165°, 4mm thick, 54mm cup, and deepening of reaming by 1 and 2mm would result in bone loss of 3780mm3 (+38%) and 5076mm3 (+85%), respectively. When oversizing to a 56mm 165° component, 4998mm3 (+82%) of bone was removed. For a 54mm, 5 mm thick component sustaining an angle of 180°, the bone loss would reach 12 410mm3 (+450%). Acetabular component design has a significant influence on the amount of acetabular bone resection. The surgical technique (avoiding over deepening and oversised components) should minimise bone loss. This knowledge is of particular importance in hip resurfacing since the acetabular component size depends on the selected femoral component size. The knowledge is is also important in THA to minimise bone loss at primary implantation.