header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 85 - 85
1 May 2017
Folkard S Bloomfield T Page P Wilson D Ricketts D Rogers B
Full Access

Introduction

We used patient reported outcome measures (PROMS) to evaluate qualitative and societal outcomes of trauma.

Methods

We collected PROMs data between Sept 2013 and March 2015 for 92 patients with injury severity score (ISS) greater than 9. We enquired regarding return to work, income and socioeconomic status, dignity and satisfaction and the EQ-5D questionnaire.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 39 - 39
1 May 2017
Gee C Poole W Wilson D Gibbs J Stott P
Full Access

Adverse reaction to metal debris (ARMD) is well recognised as a complication of large head metal on metal total hip replacement (THR) leading to pain, bone and tissue loss and the need for revision surgery. An emerging problem of trunnionosis in metal on polyethylene total hip replacements leading to ARMD has been reported in a few cases. Increased metal ion levels have been reported in THR's with a titanium stem and a cobalt chrome head such as the Accolade-Trident THR (Stryker).

We present 3 cases of ARMD with Accloade-Trident THR's with 36mm cobalt chrome head and a polyethylene liner. Metal ion levels were elevated in all three patients (cobalt 10.3 – 161nmol/l). Intraoperative tissue samples were negative for infection and inflammatory markers were normal. Abnormal fluid collections were seen in all three cases and bone loss was severe in one patient leading to a proximal femoral replacement. Histology demonstrated either a non-specific inflammatory reaction in a case which presented early or a granulomatous reaction in a more advanced case suggesting a local foreign body reaction. All patients had improved symptoms post-operatively. 1 patient who had staged bilateral Accolade-Trident THR's required revision of both THR's.

ARMD in metal on polyethylene THR's with a titanium stem represents a potential emerging problem. Further studies are required to assess whether these occurrences are rare or represent the tip of an iceberg.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 321 - 321
1 Jul 2014
Kang X Wilson D Hodgson A
Full Access

Summary

We found good to excellent reproducibility of in vivo hip joint angle measurements during repeated sitting when derived from registering low-resolution Open MRI imagesets with a reference high-resolution conventional MRI scan, despite only moderate similarity of the segmented volumes.

Keywords: hip, kinematics, MRI, femoroacetabular impingement, repeatability

Introduction

Femoroacetabular impingement (FAI) is a mechanical hip disorder caused by an abnormal bony contact between the femur and acetabulum. Open MRIs can enable studies of FAI under weightbearing, but the resolution of such scans is comparatively low, so it is useful to obtain high resolution (HR) reference scans from a conventional MRI and register lower resolution (LR) open MRI images to the HR images. The purpose of this study was to establish the degree of correspondence between the segmented volumes from the two types of scanner and to estimate the repeatability of joint angle measurements.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 98 - 98
1 Jul 2014
Palmer A Fernquest S Hamish L Pollard T McNally E Wilson D Wilson D Madler B Carr A Glyn-Jones S
Full Access

Summary

The dGEMRIC index correlates more strongly with the pattern of radiographic joint space narrowing in hip osteoarthritis at five year follow-up than morphological measurements of the proximal femur. It therefore offers potential to refine predictive models of hip osteoarthritis progression.

Introduction

Longitudinal general population studies have shown that femoroacetabular impingement increases the risk of developing hip osteoarthritis, however, morphological parameters have a low positive predictive value. Arthroscopic debridement of impingement lesions has been proposed as a potential strategy for the prevention of osteoarthritis, however, the development of such strategies requires the identification of individuals at high risk of disease progression. We investigated whether delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) predicts disease progression. This imaging modality is an indirect measure of cartilage glycosaminoglycan content.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 102 - 102
1 Aug 2012
Taylor S Mahmood W Faroug R McCarthy I Wilson D
Full Access

Early diagnosis of delayed- and non-union tibial fractures is difficult, but treatment options are available if timely data are available. Direct correlation between implant forces and healing status is difficult during stance phase loading due to soft tissue forces. This ongoing study seeks to find a minimal set of strain gauge sites needed to determine healing at any of several fracture sites, using isometric loading suitable for routine clinical usage. A series of instrumented tibial nails are being used to help determine whether an alternative technology can replace or augment existing routine methods for assessment of fracture healing.

In a prior study, a single strain gauge positioned close to the fracture site had produced mixed results. In the current study, a TRIGEN META NAIL, 10mm OD x 380mm long, was instrumented with 8 gauged sites spiraled down the nail at 34mm axial and 120deg angular separation (Gen1), and loaded in a Sawbone model in offset axial compression, 3 point bending and torque.

In order to gain early clinical results, and in a design informed by the Gen1 data, a set of instrumented nails have been made for an ovine wireless telemetry study (Gen3a), shortly to commence, in which the tibial nail has been over-gauged enabling multiple d.o.f. measurements to be made during gait, torque, axial compression and 3 point bending; the latter protocols offering more controlled patient postures. This study is to be followed by a similar human study (Gen3) involving five subjects (12 gauges per nail). Meanwhile, a parallel biomechanical study involving six nails with 20 gauges each is also planned.

In the Gen1 study, the strains diminished with distance from the fracture site and with out-of-plane sites during bending. During torque, however, the response was much more uniform for all strain sites. Significant increases in strains due to both loading regimes were seen in the fractured case vs. an intact bone.

Preliminary conclusions are that strains measured due to applied torque may offer a more sensitive and fracture site-independent means of assessing healing than induced bending. We now aim to confirm these observations in animal and human studies.