Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 173 - 173
1 May 2012
Zheng M Willers C
Full Access

Objective

To investigate the histological and immunohistochemical characteristics of revised and failed MACI repair tissues.

Methods

We examined the matrix profiles of repair biopsies taken from revised and clinically failed MACI cases by semi-quantitative immunohistochemical study using antibodies specific to aggrecan, collagens I, II, III, VI, and IX, Sox-9, Ki-67 and MMP-13. We also stiffness tested an intact clinically failed repair site.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 346 - 346
1 May 2009
Chen J Willers C Xu J Wang A Zheng M
Full Access

Large and retracted rotator cuff tendon tears fail to repair, or re-tear following surgical intervention. This study attempted to develop novel tissue engineering approaches using tenocytes-seeded bioscaffolds for tendon reconstruction of massive rotator cuff tendon defect in rabbits. Porcine small intestine submucosa (Restore™) and type I/III collagen bioscaffold (ACI-MaixTM) were chosen as bioscaffold carriers for autologous tenocytes. Biological characterization of autologous tenocytes was conducted prior to the implantation. The tenocyte-seeded bioscaffolds were implanted as interposition grafts to reconstruct massive rotator cuff tendon defects in rabbits. In situ re-implantation of the autologous rotator cuff tendon, excised during defect creation served as a positive control. Histological outcomes were analysed and semi-quantitatively graded at four and eight weeks after surgery.

The results demonstrate that at four weeks both tenocyte-seeded bioscaffolds display inflammatory reaction similar to bioscaffold-only cuff reconstruction and the histological grading were inferior to control repair. However, at eight weeks inflammatory reaction of both tenocyte-seeded bioscaffolds were dramatically reduced as compared to bioscaffold alone. In addition, bioscaf-folds seeded with tenocytes generated similar histological appearance to that of the positive control.

The implantation of autologous tenocytes on collagen-based bioscaffold offers improved rotator cuff tendon healing and remodelling compared to the implantation of bioscaffold alone.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 333 - 333
1 Sep 2005
Wood D Xu J Chen J Willers C Zheng M
Full Access

Introduction and Aims: Treatment of rotator cuff tendon tear presents a significant therapeutic challenge to surgeons. Porcine small intestinal submucosa (SIS) is a biomaterial approved by TGA and FDA for the repair of rotator cuff tendon tear. The aims of this study are to evaluate the safety and efficacy of SIS.

Method: SIS purchased from DePuy Johnson & Johnson was examined by histology and PCR technique. The material was also implanted into mice and rabbits for the evaluation of biological reaction and inflammatory response. Porcine immunoreceptor DAP12 gene was used to examine if the material contained porcine DNA.

Results: Fresh SIS membrane before implantation contains multiple layers of spindle-shaped cells mixed with a small population of round-shaped cells. Chloro-acetate esterase staining showed that the round-shaped cells are positive, indicating that they are mast cells. The tissue architecture of SIS mimics to tendon structure as evidenced by H& E staining. To further confirm if cells present in SIS material were porcine origin, nested PCR for the amplification of DAP12 gene was used. The result demonstrated that SIS membrane contain porcine DNA materials.

Conclusion: SIS contains porcine cells and nuclei acid, which contradicts with current views that SIS is a cell-free biomaterial. Although no foreign body reaction of SIS was observed, SIS implant may cause chronic inflammation. Further studies should be conducted to confirm the clinical efficacy of SIS implant.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 347 - 347
1 Sep 2005
Zheng M Willers C Wood D Jones C Smolinski D Wu J Miller K Kirk T
Full Access

Introduction and Aims: Autologous chondrocyte implantation (ACI) is emerging as a leading technique for the treatment of articular cartilage defects. However, there exists some debate regarding which ACI technique is best able to regenerate hyaline cartilage. To this end, the development of a non-invasive technique enabling the examination of microstructure after ACI is essential.

Method: In this study, we have developed a novel 2D Laser Scanning Confocal Arthroscope (LSCA) in the assessment of articular cartilage and examined the microstructure of knee articular cartilage from rabbits and patients with total knee arthroplasty. The LSCA system consists of the LSA handheld probe, a Launch and Detection Unit (LDU) with a built in 488nm–514nm Krypton Argon Laser and Master Control unit (MCU). Human and rabbit knee articular cartilage stained with Fluoroscein (5g/L) and Acriflavine (0.5g/L) were used to examine the microstructure of cartilage by LSCA.

Results: By LSCA we have generated optical histology images of normal human and rabbit articular cartilage from the femoral condyle. Optical histology of normal articular cartilage tissue reveals typically smooth surface texture with relatively homogenous sub-surface distribution of viable chondrocyte cells. The general orientation of collagen fibres is occasionally visible in surface images. Optical histology of arthritic cartilage of humans showed clusters of round-shaped chondrocytes mixed with spindle-shaped cells. Surface cracking typically indicative of tissue damage is also evident by LSCA observation. Examination of rabbit knee six weeks after ACI showed high density of chondrocytes and homogeneous matrix on the site of the defect.

Conclusion: In short, we have shown the efficacy of LSCA in the non-destructive assessment of articular cartilage in vivo. Further study is required to evaluate the clinical significance of optical histology of LSCA.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 488 - 488
1 Apr 2004
Zheng M Xu J Chen J Willers C Wood D
Full Access

Introduction Rotator cuff degeneration is considered to be a major factor in the pathogenesis of rotator cuff tendon tear. Degenerative weakening of the rotator cuff can result in irreversible complete cuff-tear arthropathy syndrome. Recently a porcine small intestinal submucosa (SIS) has been approved by TGA as biological implant for the repair of rotator cuff tendon tear. The aims of this study are to evaluate the safety and efficacy of SIS.

Methods A commercial brand of SIS was examined by histology and PCR technique. The material was implanted into mice and rabbits for the evaluation of biological reaction and inflammatory response. Next, we have used SIS to replace the rotator cuff tendon in rabbit (N=10) and compared to control (N=10). Histological examination was conducted at four and eight weeks after implantation. To further confirm if cells present in SIS material were of porcine origin, nested PCR for the amplification of DAP12 gene was used.

Results Fresh SIS membrane before implantation contain multiple layers of spindle-shaped cells mixed with a small population of round-shaped cells. Chloroacetate esterase staining showed that the round-shaped cells are positive, indicating that they are mast cells. The tissue architecture of SIS mimics tendon structure as evidenced by H & E staining. The SIS membrane contained porcine DNA materials. Subcutaneous implant of SIS in mice (by six) for up to seven days showed no obvious inflammatory response or foreign body reaction. The result demonstrated that SIS has remained in the region and mixed with regenerative fibrous tissue after eight weeks. In some cases there was a massive recruitment of lymphocytes along the surface of membrane. However, no foreign body reactive giant cells were observed.

Conclusions The result of this study indicated that SIS contains porcine cells and nucleic acid, which contradicts current views that SIS is a cell free biomaterial. Although no foreign body reaction of SIS was observed, SIS implant may cause chronic inflammation. Further studies should be conducted to confirm the clinical efficacy of SIS implant for rotator cuff tendon tear.