Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 85 - 85
1 Dec 2019
Wik T Wits⊘ E
Full Access

Aim

The incidence of early periprosthetic joint infection (PJI) after total hip arthroplasty (THA) and total knee arthroplasty (TKA) is between 1 and 2 percent. In our department approximately 700 primary THAs and TKAs are performed annually. In 2015 and 2016 the incidence of early PJIs was nearly 3%. The aim of this study was to see if it was possible to reduce the incidence of infection by employing a bundle of measures by involving staff from all aspects of patient flow and addressing preventing measures in every step of the patients´ course throughout the hospital.

Method

The Arthroplasty surgeon team reviewed the Proceedings of the International Consensus Meeting on Periprosthetic Joint Infection of 2013. Issues where literature had shown a significant effect on prevention of PJI was identified and written in an action plan. An interdisciplinary team with staff from all aspects of patient flow was established. In January 2017 the action plan was presented to the interdisciplinary team. The team discussed in what way the different issues could be solved, and issues that could be addressed without extra costs were implemented immediately. The issues addressed in the meeting were: preoperative risk factors, preoperative skin preparation, perioperative antibiotics, reducing particle amount and reducing traffic in the surgical theatre.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 74 - 74
1 Dec 2016
Wik T Foss O Klaksvik J Winther S Witso E
Full Access

Aim

The incidence of prosthetic joint infections can be severe to monitor, as they are rare events. Recent publications from National registries points toward a significant underestimation of reported infections. The aim of this project was to develop a complication register that could report the “true” and momentaneous incidence of prosthetic infections after total knee and hip arthroplasty.

Method

All patients operated with total hip arthroplasty (THA) or total knee arthroplasty (TKA) at our hospital were included in a local quality registry. All complications were reported at follow-up at 2 and 3 months for total knee and hip arthroplasties respectively, and at 1-year follow up. Both primary and revision surgeries were included. In order to monitor complications of special interest, such as deep postoperative infections, key variables were presented in a g-chart. This chart shows the number of uncomplicated surgeries between each complication (such as infection) in a bar diagram. This diagram is easily read as high bars indicate a low incidence of complications and low bars indicate a high incidence. The diagram is updated and distributed for information every month.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 172 - 172
1 May 2011
Wik T Oestbyhaug P Klaksvik J Aamodt A
Full Access

Background: Resurfacing hip arthroplasty has re-emerged as an option in total hip arthroplasty and by 2008 these prostheses constituted 7.8% of the total number of primary hip replacements in Australia. In the Scandinavian countries the use of resurfacing prostheses is substantially less, reported from 0.6–2.8% in the different national arthroplasty registries. The resurfacing implant preserves proximal bone stock and is expected to retain a physiological load transfer in the proximal femur. Mid-term results for the resurfacing implants are promising, but periprosthetic neck fractures remains the most frequent complication. Finite element analyses have suggested increased strains in the femoral neck area after resurfacing arthroplasty. This has not yet been proved in a cadaver model.

Purpose: This study compared the strain pattern of the femoral neck and the proximal femur in cadaver femurs before and after insertion of a resurfacing femoral component.

Material and method: When load transfers trough the hip joint to the femur, the bone undergoes a deformation, which can be measured by strain gauges. In this study, ten strain gauge rosettes were distributed on the femoral neck and proximal femur of thirteen human cadaver femurs. The femurs were loaded in a hip simulator for single leg stance and stair climbing. Cortical strains were measured on the femoral neck and proximal femur before and after implantation of a resurfacing femoral component (DePuy ASRTM).

Results: After resurfacing the mean tensile strain increased by 15 % (CI: 6 – 24%, p=0.003) on the lateral femoral neck, and mean compressive strain increased by 11 % (CI: 5 – 17%, p=0.002) on the medial femoral neck during single leg stance simulation. On the anterior side of the femoral neck the strain increased up to 16%, however this difference was not found statistically significant. On the proximal femur the deformation pattern remained similar to the strains measured on the unoperated femurs.

Discussion: Both patient related factors such as female gender, obesity and high age, and surgical factors such as notching, lack of seating and varus-orientation of the implant have been associated with increased risk of neck fracture after resurfacing arthroplasty. We asked ourselves if there could be a biomechanical factor contributing to the risk of periprosthetic fracture. The small increase of strains in the neck area would probably not alone be sufficient to cause a neck fracture. Acting together with patient-specific and surgical factors it may however contribute to the risk of early periprosthetic fracture.