Excessive apoptosis has been found in torn supraspinatus tendon1 and mechanically loaded tendon cells2. Following oxidative and other forms of stress, one family of proteins that is often unregulated are Heat Shock Proteins (HSPs). The purpose of this study was to determine if HSPs were unregulated in human and rat models of tendinopathy and to determine if this was associated with increased expression of regulators of apoptosis (cFLIP, Caspases 3&
8). A running rat supraspinatus tendinopathy overuse model 3 was used with custom microarrays consisting of 5760 rat oligonucleotides in duplicate. Seventeen torn supraspinatus tendon and matched intact subscapularis tendon samples were collected from patients undergoing arthroscopic shoulder surgery. Control samples of subscapularis tendon were collected from ten patients undergoing arthroscopic stabilisation surgery and evaluated using semiquantative RT-PCR and immunohistochemistry. Rat Microarray: Upregulation of HSP 27 (×3.4) &
70 (×2.5) and cFLIP (×2.2) receptor was noted in degenerative rat supraspinatus tendon subjected to daily treadmill running for 14 days compared to tendons of animals subject to cage activity only. Histological analysis: All torn human supraspinatus tendons exhibited changes consistent with marked tendinopathy. Matched subscapularis tendon showed appearances of moderate-advanced degenerative change. Apoptosis mRNA expression: The expression levels of caspase 3 &
8 and HSPs 27 &
70 were significantly higher in the torn edges of supraspinatus when compared to matched subscapularis tendon and control tendon (p<
0.01). cFLIP showed significantly greater (p<
0.001) expression in matched subscapularis compared to supraspinatus and control tendon. Immunohistochemical analysis: cFLIP, Caspase 3 &
8 and HSP 27 and 70 was confirmed in all samples of torn supraspinatus tendon. Significantly increased immunoactivity of Caspase 3&
8 and HSP 27 &
70 were found in torn supraspinatus (p<
0.001) compared to matched and normal subscapularis. The proteins were localized to tendon cells. The finding of significantly increased levels of Heat Shock Proteins in human and rat models of tendinopathy with the co-expression of other regulators of apoptosis suggests that Heat Shock Proteins play a role in the cascade of stress activated-programmed cell death and degeneration in tendinopathy.