header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 19 - 19
1 Dec 2022
Eltit F Wang Q Xu S Satra M Liu D Wang R Charest-Morin R Cox M
Full Access

One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM.

Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization.

By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of proteoglycans as decorin.

Immunohistochemistry of biopsies revealed that PC-cells inside bone organize into two manners: i) glandular-like structures where cells maintain their polarization in the expression of prostate markers, ii) diffuse infiltrate that spreads along bone surfaces, with loss of cell polarity. These cells take direct contact with osteoblasts in the surface of trabecula. We define that PCBM are mostly composed by AR+ with some double negative cells. We did not observe neuroendocrine phenotype cells.

PCBMs generate predominantly osteoblastic lesions that are characterized by high lacunar density, lack of collagen organization and elevated proteoglycan content. These structural changes are associated with the infiltration of PC cells that are mostly androgen-dependent but have lost their polarization and contact directly with osteoblasts, perhaps altering their function. These changes could be associated with lower mechanical properties that led to fracture and weakness of the PCBM affected bone.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 62 - 62
1 Dec 2021
Wang Q Goswami K Xu C Tan T Clarkson S Parvizi J
Full Access

Aim

Whether laminar airflow (LAF) in the operating room (OR) is effective for decreasing periprosthetic joint infection (PJI) following total joint arthroplasty (TJA) remains a clinically significant yet controversial issue. This study investigated the association between operating room ventilation systems and the risk of PJI in TJA patients.

Method

We performed a retrospective observational study on consecutive patients undergoing primary total knee arthroplasty (TKA) and total hip arthroplasty (THA) from January 2013-September 2017 in two surgical facilities within a single institution, with a minimum 1-year follow-up. All procedures were performed by five board-certified arthroplasty surgeons. The operating rooms at the facilities were equipped with LAF and turbulent ventilation systems, respectively. Patient characteristics were extracted from clinical records. PJI was defined according to Musculoskeletal Infection Society criteria within 1-year of the index arthroplasty. A multivariate logistic regression model was performed to explore the association between LAF and risk of 1-year PJI, and then a sensitivity analysis using propensity score matching (PSM) was performed to further validate the findings.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 20 - 20
1 Dec 2017
Xu L Chen X Wang H Wang F Wang Q
Full Access

Over the past decades, computer-aided navigation system has experienced tremendous development for minimising the risks and improving the precision of the surgery. Nowadays, some commercially-available and self-developed surgical navigation systems have already been tested and proved successfully for clinical applications. However, all of these systems use computer screen to render the navigation information such as the real-time position and orientation of the surgical instrument, virtual path of preoperative surgical planning, so that the surgeons have to switch between the actual operation site and computer screen which is inconvenient and impact the continuity of surgery. In recent years, Augmented Reality (AR)- based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualisation of an extensive variety of information to the users.

Therefore, in this study, a pilot study of a surgical navigation system for orthopaedics based on optical see-through augmented reality (AR-SNS) is presented, which encompasses the preoperative surgical planning, calibration, registration, and intra-operative tracking. With the aid of AR-SNS, the surgeon wearing the optical see-through head-mounted display can obtain a fused image that the 3D virtual critical anatomical structures are aligned with the actual structures of patient in intra-operative real-world scenario, so that some disadvantages of the traditional surgical navigation are overcome (For example, surgeon is no longer obliged to switch between the real operation scenario and computer screen), and the safety, accuracy, and reliability of the surgery may be improved.