header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 50 - 50
1 Dec 2022
AlDuwaisan A Visva S Nguyen-Luu T Stratton A Kingwell S Wai E Phan P
Full Access

Symptomatic lumbar spinal stenosis is a common entity and increasing in prevalence. Limited evidence is available regarding patient reported outcomes comparing primary vs revision surgery for those undergoing lumbar decompression, with or without fusion. Evidence available suggest a lower rate of improvement in the revision group. The aim of this study was to assess patient reported outcomes in patients undergoing revision decompression, with or without fusion, when compared to primary surgery.

Patient data was collected from the Canadian Spine Outcomes Research Network (CSORN) database. Patients undergoing lumbar decompression without or without fusion were included. Patients under 18, undergoing discectomy, greater than two level decompressions, concomitant cervical or thoracic spine surgery were excluded. Demographic data, smoking status, narcotic use, number of comorbidities as well as individual comorbidities were included in our propensity scores. Patients undergoing primary vs revision decompression were matched in a four:one ratio according to their scores, whilst a separate matched cohort was created for those undergoing primary vs revision decompression and fusion. Continuous data was compared using a two-tailed t-test, whilst categorical variables were assessed using chi-square test.

A total of 555 patients were included, with 444 primary patients matched to 111 revision surgery patients, of which 373 (67%) did not have fusion. Patients undergoing primary decompression with fusion compared to revision patients were more likely to answer yes to “feel better after surgery” (87.8% vs 73.8%, p=0.023), “undergo surgery again” (90.1% vs 76.2%, P=0.021) and “improvement in mental health” (47.7% vs 28.6%, p=0.03) at six months. There was no difference in either of these outcomes at 12 or 24 months. There was no difference between the groups ODI, EQ-5D, SF 12 scores at any time point. Patients undergoing primary vs revision decompression alone showed no difference in PROMs at any time point.

In a matched cohort, there appears to be no difference in improvement in PROMS between patients undergoing primary vs revision decompression, with or without fusion, at two year follow-up. This would suggest similar outcomes can be obtained in revision cases.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 100 - 100
1 Jul 2020
Vu K Phan P Stratton A Kingwell S Hoda M Wai E
Full Access

Resident involvement in the operating room is a vital component of their medical education. Conflicting and limited research exists regarding the effects of surgical resident participation on spine surgery patient outcomes. Our objective was to determine the effect of resident involvement on surgery duration, length of hospital stay and 30-day post-operative complication rates.

This study was a multicenter retrospective analysis of the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. All anterior cervical or posterior lumbar fusion surgery patients were identified. Patients who had missing trainee involvement information, surgery for cancer, preoperative infection or dirty wound classification, spine fractures, traumatic spinal cord injury, intradural surgery, thoracic surgery and emergency surgery were excluded. Propensity score for risk of any complication was calculated to account for baseline characteristic differences between the attending alone and trainee present group. Multivariate logistic regression was used to investigate the impact of resident involvement on surgery duration, length of hospital stay and 30 day post-operative complication rates.

1441 patients met the inclusion criteria: 1142 patients had surgeries with an attending physician alone and 299 patients had surgeries with trainee involvement. After adjusting using the calculated propensity score, the multivariate analysis demonstrated that there was no significant difference in any complication rates between surgeries involving trainees compared to surgeries with attending surgeons alone. Surgery times were found to be significantly longer for surgeries involving trainees. To further explore this relationship, separate analyses were performed for tertile of predicted surgery duration, cervical or lumbar surgery, instrumentation, inpatient or outpatient surgery. The effect of trainee involvement on increasing surgery time remained significant for medium predicted surgery duration, longer predicted surgery duration, cervical surgery, lumbar surgery, lumbar fusion surgery and inpatient surgery. There were no significant differences reported for any other factors.

After adjusting for confounding, we demonstrated in a national database that resident involvement in surgeries did not increase complication rates, length of hospital stay or surgical duration of more routine surgical cases. We found that resident involvement in surgical cases that were generally more complexed resulted in increased surgery time. Further study is required to determine the relationship between surgery complexity and the effect of resident involvement on surgery duration.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 71 - 71
1 Nov 2016
Garland K Roffey D Phan P Wai E Kingwell S
Full Access

Adverse events (AEs) following spine surgery are very common. It is important to monitor the incidence of AEs to ensure that appropriate practices are implemented to minimise AEs and improve patient outcomes. The Spine Adverse Events Severity System (SAVES) is a validated AE recording tool specifically designed for spine surgery and the Orthopaedic Surgical Adverse Events Severity System (OrthoSAVES) is a similar tool intended for general orthopaedic surgery. The main objective was to prospectively collect AE data from spine surgery patients using SAVES and OrthoSAVES and compare their viability and applicability for use. The longterm objective is to enhance patient safety by tracking AEs with a view towards potentially changing future healthcare practices to eliminate the risk factors for AEs.

For a 10-week period in June-September 2015, three spine surgeons used SAVES to record AEs experienced by any elective spine surgery patients. In addition, a trained independent clinical reviewer with access to electronic records, medical charts, and allied health professionals (e.g. nurses, physioterhapists) used SAVES and OrthoSAVES to record AEs for the same patients. At discharge, the SAVES forms from the surgeons and SAVES and OrthoSAVES forms from the independent reviewer were collected and all AEs were recorded in a database.

In 48 patients, the independent reviewer recorded a total of 45 AEs (4 intra-operative, 41 post-operative), compared to the surgeons who recorded a total of 8 AEs (2 intra-operative, 6 post-operative) (P2) were recorded by both the independent reviewer and surgeons. OrthoSAVES had the capacity to directly record 3 additional AEs that had to be included in the “Other” section on SAVES.

SAVES and OrthoSAVES are valuable tools for recording AEs. Use of SAVES and OrthoSAVES has the potential to enhance patient care and safety by ensuring AEs are followed by the surgeon during their in-hospital stay and prior to discharge. Independent reviewers are more effective at capturing AEs following spine surgery, and thus, could be recruited in order to capture more AEs and maximise different complication diagnoses in alignment with proposed diagnosis-based funding models. The next step is to analyse AE data identified by the hospital discharge abstract to determine whether retrospective administrative coding can adequately record AEs compared to prospectively-collected AE data with SAVES/OrthoSAVES.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 21 - 21
1 Nov 2016
Chen B Garland K Roffey D Poitras S Lapner P Dervin G Phan P Wai E Kingwell S Beaulé P
Full Access

The Spine Adverse Events Severity System (SAVES) and Orthopaedic Surgical Adverse Events Severity System (OrthoSAVES) are standardised assessment tools designed to record adverse events (AEs) in orthopaedic patients. The primary objective was to compare AEs recorded prospectively by orthopaedic surgeons compared to trained independent clinical reviewers. The secondary objective was to compare AEs following spine, hip, knee, and shoulder orthopaedic procedures.

Over a 10-week period, three orthopaedic spine surgeons recorded AEs following all elective procedures to the point of patient discharge. Three orthopaedic surgeons (hip, knee, and shoulder) also recorded AEs for their elective procedures. Two independent reviewers used SAVES and OrthoSAVES to record AEs after reviewing clinical notes by surgeons and other healthcare professionals (e.g. nurses, physiotherapists). At discharge, AEs recorded by the surgeons and independent reviewers were recorded in a database.

AE data for 164 patients were collected (48 spine, 52 hip, 33 knee, and 31 shoulder). Overall, 98 AEs were captured by the independent reviewers, compared to 14 captured by the surgeons. Independent reviewers recorded significantly more AEs than surgeons overall, as well as for each individual group (i.e. spine, hip, knee, shoulder) (p2), but surgeons failed to record minor events that were captured by the independent reviewers (e.g. urinary retention and cutaneous injuries; AEs Grade 0.05). AEs were reported in 21 (43.8%), 19 (36.5%), 12 (36.4%), and five (16.1%) spine, hip, knee, and shoulder patients, respectively. Nearly all reported AEs required only simple or minor treatment (e.g. antibiotic, foley catheter) and had no effect on outcome. Two patients experienced AEs that required invasive or complex treatment (e.g. surgery, monitored bed) that had a temporary effect on outcome.

Similar complication rates were reported in spine, hip, knee, and shoulder patients. Independent reviewers reported more AEs compared to surgeons. These findings suggest that independent reviewers are more effective at capturing AEs following orthopaedic surgery, and thus, could be recruited in order to capture more AEs, enhance patient safety and care, and maximise different complication diagnoses in alignment with proposed diagnosis-based funding models.


Background

Foraminal stenosis is often encountered in patients undergoing decompression for spinal stenosis. Given the increased resection of facets and the presence of the more sensitive dorsal root ganglion, it is hypothesized that patients with foraminal stenosis have poorer postoperative outcomes.

Methods

Thirty-one patients undergoing decompression without fusion for lumbar spinal stenosis were evaluated. The degree of foraminal stenosis was determined by 2 independent reviewers for absence of fat around the nerve roots. ImageJ digital imaging software was also used to evaluate the foraminal area. Patients with foraminal stenosis were compared with those without using the Oswestry Disability Index (ODI) and a numerical pain scale for back and leg pain at a minimum of 1 year follow-up.