Good outcomes in reverse shoulder arthroplasty (RSA) rely in part on stability of the humeral component. Traditionally humeral components have been cemented, however there has been recent interest in press-fit fixation of humeral components in RSA. Lateralization of the head center in RSA can impart larger moments on the humeral component than for anatomic reconstructions, increasing the importance of distal humeral canal preparation for implant stability. To date, the primary stability of any type of press-fit humeral prosthesis has been largely unexplored. The goal of this study is to evaluate the effect of over-reaming the distal humeral canal in a press-fit humeral component in RSA. Computed tomography (CT) data of the shoulder were obtained from 55 shoulders. Images were segmented to produce digital models of the humerus. Humeral components for RSA (2mm diameter size increments) were sized and placed per the surgical technique, including preparation of the humerus with the appropriate reamers (1mm increments). Finite element models for each specimen were created with heterogeneous bone properties derived from the CT scan. Pressfit between the bone and stem was resolved to quantify the initial contact pressure on the stem; each stem was then loaded at 566N oriented 20° lateral and 45° anterior. Overall motion of the stem was measured, as well as interfacial micromotion in the porous coating region (Fig. 1). The effect of line-to-line (L2L) reaming and over-reaming by 1 mm was evaluated using an unpaired Student's t-test, with significance defined at p<0.05.Introduction
Methods
Accurate placement of glenoid components in reverse and total shoulder arthroplasty has been shown to reduce the risk of implant failure (1, 2, 6). Surgical techniques and literature describe methods to determine favorable positions for implant placement (3, 4, 5) but achieving that position surgically remains a challenge. Placement of glenoid components is faced with the challenge of variable glenoid morphology on which conventional instrumentation does not always provide a reliable reference (6, 7, 8). Limited surgical exposure is another challenge since many anatomic landmarks are not visible to the surgeon to use as spacial reference. Anatomic landmarks and angles can be more reliabily selected on CT scans with 3-dimentional reconstruction (9,10) yet few methods allow for the reproducible translation of these plans to surgery. Navigation has produced better accuracy and lower variability than conventional instrumentation (11), yet its regular usage remains limited, especially in the shoulder. A patient specific planning and guiding system has been developed for glenoid implant placement of total and reverse shoulder arthoplasty procedures. This method allows for preoperative planning on a patient specific virtual 3D model of the scapula derived from CT images (Figure 1), and guided placement of a pin which which serves as the central axis for determining proper implant position. An initial implant position was presented on the virtual model based on the methods described by the surgical technique of the corresponding procedure. These plans were either approved or adapted to a desired position within the planning software by the surgeons. Using this planned position as input, patient specific surgical guides were created which fit onto the exposed anatomy and guide the drilling of the pin (Figure 1). This method was tested on 14 cadavers, with attention directed to translation of the starting point from the original plan, the ability to reproduce the intended degree of inferior tilt, and the ability to reproduce the glenoid version angle.Background and Motivation
Methods