Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 435 - 435
1 Sep 2009
Costi J Stanley R Smith L Tettis H Tsangari H Hearn T Fazzalari N
Full Access

Introduction: Disc degeneration causes structural and biochemical tissue changes resulting in altered stresses that may affect vertebral bone remodelling. We hypothesized that disc degeneration alters vertebral cortical strains and disc mechanics of the motion segment, with and without the presence of zygapophyseal joints.

Methods: Twenty human lumbar functional spinal units (FSUs) were strain gauged on the lateral and anterior vertebral cortices, below the inferior endplate. Each FSU was preloaded overnight (0.2 MPa) in a bath and subjected to dynamic compression (1 MPa), flexion/extension/lateral bending (500N + 5 Nm), and axial rotation (5 Nm), before and after removal of the zygapophyseal joints. After testing, discs were macroscopically assessed and graded (1–4) for degeneration. Stiffness, phase angle (energy absorption) and principal strains were calculated. ANOVAs with the dependent variable of principal strain/stiffness/phase angle versus disc grade were performed for each testing direction.

Results: Assessment of disc degenerative condition revealed six grade 2 discs, eight grade 3, and six grade 4. Age and degeneration were highly correlated (r=0.80, P< 0.0001). The effect of disc grade on stiffness was significant overall in most loading directions, before and after removal of zygapophyseal joints (P< 0.008), apart for axial rotation (P> 0.587). Post-hoc multiple comparisons for all loading directions apart for axial rotation revealed that the stiffness of grade 4 discs was significantly larger than grades 2 and 3 discs in most loading directions.

For phase angle (approximate magnitude 5°), no significant overall effects due to degeneration were found across any loading direction (P> 0.2). ANOVA analyses on maximum/minimum principal strains found no significant effect due to disc grade (P> 0.063). However, a small number of significant effects due to disc grade were found at particular strain gauge locations for the isolated disc in flexion, the intact FSU in extension, and the intact FSU/isolated disc in right lateral bending.

Discussion: This study represents the first of its kind to investigate the effects of disc degeneration on vertebral bone cortical strain and disc mechanical properties. Significant increases in stiffness were found with increasing degeneration in all test directions apart for axial rotation. Changes in disc stiffness were consistent with other studies and may be a result of the structural and biochemical changes within the disc that accompany the degenerative process.

The non-significant small phase angles suggest that the disc behaves more like an elastic solid than a poroelastic material, and that dehydration associated with degeneration does not adversely affect damping. Principal strains were not significantly affected by disc degeneration overall, suggesting that the cortical shell adjacent to the disc-endplate boundary maintains a relatively homeostatic condition, with more dramatic architectural changes probably occurring within the trabecular bone. Applications of this research include providing important validation data for analytical/finite element models of the intact FSU and isolated disc segment, and a better understanding of the magnitudes of cortical strains that need to be maintained in order to avoid damaging vertebral bone stress-shielding effects after treatments for disc degeneration.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 400 - 400
1 Sep 2005
Costi J Tettis H Stanley R Hearn T Fazzalari N
Full Access

Introduction The influence of annular tears on the biomechanical inter-relationship between the disc and vertebral body has a potentially important role in the mechanism of subsequent biological changes in disc and bone. The disc is a complex structure, exhibiting visco-elastic behaviour that is highly dependent on its condition and fluid content. Studies have shown that the stiffness of the disc is altered by its water content in human, ovine and bovine discs. It has also been shown that disc stiffness or modulus can be preserved if the level of water in the disc is kept constant. The importance of maintaining a reproducible state of stress in the disc during sequential testing of the same specimen is crucial to ensuring consistency of results and minimising systematic experimental errors. The aims of this study were to assess the reliability of sequential testing of the same specimen, and to determine whether stiffness, strains and pressure distribution can be restored to pre-testing levels under a uniform hydration loading environment.

Methods Six ovine FSUs with isolated discs were used in this study. Eight, 1-mm strain gauge rosettes were then bonded to the inferior VB of each FSU at lateral and anterior positions and three heights. FSUs were equilibrated for four hours in a saline bath at room temperature in a materials testing machine. A real-time pressure sensor was placed under the VB. FSUs were tested in axial compression at 0.1 Hz to 1 MPa for 5 sinusoidal cycles. Once tested, the FSU was placed under 0.25 MPa preload for one hour in the water bath for re-equilibration and tested again. Pilot studies by this group have shown that one hour is sufficient to return the disc to its original equilibrium state in a bath after testing, with no associated change in stiffness. This sequence was repeated four times to produce a total of five tests on each FSU. Outcome measures were FSU stiffness, axial strain, peak pressure, average pressure and contact area. Data was statistically analysed using intra-class correlation coefficients (ICC), and repeated measures ANOVA or paired t-tests.

Results The ICC for the five repeated stiffness measures was 0.24 (i.e 24% of the variation in the results was due to between-specimen tests with 76% of the variation due to within-specimen tests). Repeated measures ANOVA found no significant effect on stiffness due to repeating the test five times (P = 0.445). The ICC for the eight axial strains ranged from 0.8 to 0.99. There were no significant differences within any of the eight axial strains over the five repeats (P > 0.287). ICCs, and P values (in brackets) from repeated measures ANOVA, were 0.91 (0.179) for peak pressure, 0.85 (0.44) for average pressure and 0.99 (0.077) for contact area.

Discussion The largest systematic variation was seen for stiffness and this may be due to the tissue changes over the 9 hours of testing. Axial strains showed good to excellent agreement over the five repeated tests as did all pressure parameters. We conclude that the method of allowing one hour for re-equilibration in ovine discs produces a reproducible state of stress in the disc and minimises experimental errors.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 401 - 401
1 Sep 2005
Costi J Tettis H Stanley R Hearn T Fazzalari N
Full Access

Introduction The influence of annular tears on the biomechanical inter-relationship between the disc and vertebral body (VB) has a potentially important role in the mechanism of subsequent biological changes in disc and bone. It is postulated that changes in the disc may result in increased or abnormal spinal segment motion, modified load distribution across the spinal joint and altered cancellous bone architecture. There have been no studies investigating the direct effect of disc injury on functional spinal unit (FSU) stiffness and the distribution of pressure immediately adjacent to the disc inferior endplate. The aim of this study was to determine whether minor and severe radial tear injuries to the disc alters FSU stiffness and VB surface pressure distribution.

Methods Six ovine FSUs were used in this study. The posterior elements were removed leaving the isolated disc in each FSU. The inferior VB was transversely cut immediately inferior to the endplate and the neutral axis of bending (NAB) identified and marked. FSUs were equilibrated in a saline bath at room temperature for four hours under a constant preload of approximately 0.25 MPa prior to testing. After equilibration, FSUs were transferred to a saline bath in a materials testing machine (Instron 8511, Instron, High Wycombe, UK) and a real-time pressure sensor (I-Scan 5076, Tekscan Inc., MA, USA) placed under the inferior VB.

While maintaining the preload, FSUs were loaded in axial compression at 0.1 Hz through the NAB to 1 MPa in a saline bath for 5 sinusoidal cycles. Once tested, a radial tear was introduced via scalpel injury into the left postero-lateral region of the annulus and tested after one hour of re-equilibration. A final, more severe injury, in the form of removal of a 5 mm x 2 mm window of annulus at the same location was performed and tested after re-equilibration.

Outcome measures were FSU stiffness, peak pressure, average pressure, contact area, and centroid of force location. Data was statistically analysed using repeated measures ANOVA or paired t-tests.

Results No significant differences in stiffness was found as a result of disc injury (P = 0.857), nor for peak and average pressure, contact area and centroid location (P > 0.179).

Discussion These results may not be surprising given that the disc has been shown to be remarkably resilient under axial compression, even with a severe annular or nuclear injury. Further insight will be revealed when other modes of loading are performed in both ovine and human discs for the main study planned to be undertaken in the near future.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 400 - 400
1 Sep 2005
Tettis H Costi J Stanley R Fazzalari N Hearn T
Full Access

Introduction Dynamically identifying the distribution of pressure between any two given surfaces such as articulating joints is of fundamental importance in understanding their interaction. The purpose of this laboratory study was to assess the potential of a dynamic pressure measurement system, Tekscan. ( I-Scan 5076, Tekscan Inc., MA, USA) via a study which observed the changes in the load profile through the vertebral body of harvested ovine lumbar functional spinal units (FSU’s) with a created defect in the intervertebral disc.

The system was used to determine pressure distributions in isolated vertebral bodies inferior to the disc, during axial compression of normal and injured discs of an ovine functional spinal unit.

Methods Four ovine lumbar segments L1-L3 were harvested The superior vertebral body (VB) remained complete, whilst the inferior VB was sectioned 2mm from the endplate and the surface smoothed using emery paper in order to achieve maximum contact area. The neutral axis of bending for each specimen was identified and marked. In accordance with the manufacturer guidelines, the sensor was conditioned and calibrated between 20-200N of load. Testing was carried out in a materials testing machine (Instron 8511, Instron, High Wycombe, UK), where 200N of axial load was applied through the FSU and a snapshot of the instantaneous pressure distribution was taken. A 12 x 2 mm gap defect was created in the right ventro-lateral (2 specimens) and the right lateral (2 specimens) aspect of the IVD. The specimens were returned to the Instron and 200N of load was applied axially through the NAB. A recorded image of the pressure footprint was taken.

Results Comparing the recorded colour-coded images together with their centroids of force of the pre- and post-injury pressure distributions of the vertebral bodies, it was clearly evident that there was a major shift of the load through the IVD. As predicted and as seen in the pressure footprint, the pressure shifted in the opposing direction of the injury in order to maintain a balanced system. A pressure reading validation was also carried out with the use of the Instron, where the experimental pressure of the sensor was within 3% of the NATA calibrated load cell.

Discussion The system was used to sample pressure in real time and display it as a 3D colour-coded map, allowing for visualisation of normal pressure distributions. The associated software has numerous aids and functions, allowing real-time visualisation of the dynamic forces and the balance of forces across two interacting surfaces, making the system an invaluable analytical tool.

The Tekscan system will be used to observe the effect of disc injury on the pressure distribution of the adjacent vertebral body. The relationship between the pressure distribution across the vertebral body and bone architecture will also be studied

This study illustrated that this system is a valid tool for qualitatively and quantitatively assessing dynamic pressure distributions.


Introduction Vertebral deformity, disc disorganisation, and change to vertebral bone architecture are morphological features that are associated with degeneration of the spine and with back pain. Observations from our earlier studies found that the BV/TV is always a maximum in the inferior third of the vertebral body (VB), and minimum in the central third. Animal model studies have reported that the strain in loaded vertebra is a minimum in the central third of the vertebra. There have been no studies investigating the direct affect of VB removal on functional spinal unit (FSU) stiffness, strain magnitude and the distribution of pressure immediately adjacent to the sectioned VB. There were a number of aims for this study. The first aim was to determine whether the strain varies between supero-inferior locations on the VB. The second aim was to determine if strain symmetry was present across the normal VB. The third aim was to determine whether transverse sectioning of the VB alters the stiffness, strains and pressure distributions of the functional spinal unit (FSU) and VB.

Methods Six ovine FSUs with isolated discs were used in this study. Eight, 1-mm strain gauge rosettes were then bonded to the inferior VB of each FSU at lateral and anterior positions and three heights. FSUs were equilibrated in a saline bath at room temperature in a materials testing machine. A real-time pressure sensor was placed under the VB. FSUs were tested in axial compression at 0.1 Hz to 1 MPa for 5 sinusoidal cycles. The inferior VB was then sectioned transversely at 1/3 of its height and placed under preload for one hour for re-equilibration and re-tested. This procedure was repeated at 2/3 of VB height and immediately adjacent to the endplate. Outcome measures were FSU stiffness, axial strain, peak pressure and average pressure. Data was statistically analysed using repeated measures ANOVA or paired t-tests.

Results The results of the first aim found no significant difference in strains within the right lateral or left lateral (P > 0.134) columns of strain gauges. However, for the anterior column of strain gauges, the superior strain was 30% higher than the inferior strain (P = 0.047). The results of the second aim found no significant differences between laterally opposing strain gauges (P > 0.139). For the third aim, transverse sectioning of the VB over three levels produced no significant differences for FSU stiffness (P = 0.275), strains for any strain gauge (P > 0.087), or peak and average pressures (P > 0.076).

Discussion This complex pilot study has shown that overall, axial cortical strain in a normal, ovine FSU did not vary with VB supero-inferior location laterally, but did vary anteriorly. Strains were symmetrical between laterally opposing VB locations at each of three levels, and was not affected by transverse sectioning of the VB at three levels. The finding that anterior column strains differ, may relate to changes in load distribution governed by VB surface second moment of area differences (laterally compared to anteroposteriorly), and the absence of a disc inferiorly. Further insight will be revealed when other modes of loading are performed in both ovine and human discs for the main study planned to be undertaken in the near future.