Over the last two decades, design modifications in cementless total hip arthoplasty have led to longer lasting implants and an increased success rate. However, there remains limitations to the cementless femoral stem implant. Traditional cementless femoral components require large amounts of bone to be broached prior to stem insertion (
no implants, stemless, ultra short and short stem proximal fill implants in a test rig designed to assimilate muscle forces across the hip joints, including the ilio-tibial band and the hip abductors. Analysis of the resulting surface strains was performed using the photoelastic method. For each femur, intact and with the different stem length components in place, the fringe patterns were compared at the same applied loads. The highest fringe orders observed for all tests were located on the lateral proximal femur and medial proximal femur. The fringes decreased as they approached the neutral axis of bending (posterior and anterior). Distal fringe patterns were more prominent as the stem length increased. The results demonstrate that the stemless design most closely replicated normal strain patterns seen in a native femur during simulated gait. The presence of a stemless, ultra short and short stem reduced proximal strain and increased distal strain linearly, thereby increasing the potential for stress shielding. The stemless design most closely replicated normal strain patterns observed in a native femur and for this reason has the potential to address the shortcomings of the traditional cementless femoral implant.