Treatment of non-union in open tibial fractures Gustilo-Anderson(GA)-3A/3B fractures remains a challenging problem. Most of these can be dealt using treatment methods that requires excision of the non-union followed by bone grafting, masquelet technique, or acute shortening. Circular fixators with closed distraction or bone transport also remains a useful option. However, sometimes due to patient specific factors these cannot be used. Recently antibiotic loaded bone substitutes have been increasingly used for repairing infected non-unions. They provide local antibiotic delivery, fill dead space, and act as a bone conductive implant, which is resorted at the end of a few months. We aimed to assess the outcome of percutaneous injection of bone substitute while treating non-union of complex open tibial fractures. Three cases of clinical and radiological stiff tibial non-union requiring further intervention were identified from our major trauma open fracture database. Two GA-3B cases, treated with a circular frame developed fracture-related-infection(FRI) manifesting as local cellulitis, loosened infected wires/pins with raised blood-markers, and one case of GA-3A treated with an intramedullary nail. At the time of removal of metalwork/frame, informed consent was obtained and Cerament-GTM(bone-substitute with gentamicin) was percutaneously injected through a small cortical window using a bone biopsy(Jamshedi needle). All patients were allowed to weight bear as tolerated in a well-fitting air-cast boot and using crutches. They were followed up at 6 weekly intervals with clinical assessment of their symptoms and radiographs. Fracture union was assessed using serial radiographs with healing defined as filling of fracture gap, bridging callus and clinical assessment including return to full painless weight bearing.Introduction
Materials & Methods
One of the major concerns of hinge knees have been reported in literature is mechanical failure. Failure in the form of component fracture (2–10%) and hinge dislocation/ failure are worrisome. In addition, higher risk of aseptic loosening with hinge knee prosthesis has been attributed to stress transfer at bone cement interface. Retrospective review of clinical and radiological results of 71 consecutive patients operated at single centre using Smiles hinge knee (Stanmore implants) between 2010 and 2014. Data was collected till the latest follow up. Mechanical failure due to any reason was considered as primary end point. Radiological evidence of aseptic loosening was considered to be one of the surrogate end points.Background
Methods
Lag screw fixation with plate osteosynthesis is the usual recommendation for oblique non-comminuted lateral malleolus fractures. Lag screw fixation may sometimes pose varying difficulties depending on the orientation of the fracture and in osteoporotic bones where the process may cause disintegration of the bone. The purpose of this study was to evaluate whether additional lag screw fixation with plate osteosynthesis offered any advantage over plate only fixation in non-comminuted oblique fractures of the lateral malleolus. A simple method of fixation was employed where the fracture was reduced and held temporarily with a K wire. After fixation with plate the K wire was removed. A total of 20 patients who had non-comminuted unstable oblique fractures of their lateral malleolus that had been surgically fixed plate only fixation were retrospectively evaluated. The patients were aged between 17 and 70 yrs. Evaluation of the success of fixation, complications, resultant mobility and patient satisfaction was based on information gathered from X-ray findings and clinic notes. These results were compared to an agematched group of 20 consecutive patients treated with lag screw fixation and plate osteosynthesis. There was no significant difference in the rate of or functional outcomes in either groups. Lag screw fixation offers no additional advantage when combined with plate synthesis of non-comminuted oblique lateral malleolus fractures.